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Introduction

◮ Due to
◮ the widespread deployment of ML in practical applications
◮ the black-box nature of the more accurate models (such as neural networks and

random or boosted forests)
◮ upcoming regulations in many jurisdictions that require model or algorithmic

decisions to be explainable, so they can be trusted or audited (for bias, fairness,
mistakes, etc.)

the topic of model interpretability/explainability has achieved enormous
prominence in recent years.

◮ While the vast majority of work in this area has focused on classification,
interpreting clustering methods/results has received far less attention.



What is an “interpretable” clustering?

◮ We aim at explaining how an input instance x ∈ R
D (not necessarily in the

training set) is mapped or assigned to a particular cluster. We call this the
out-of-sample mapping.

◮ The optimal out-of-sample mapping for k-means is given by assigning the instance
x to its closest centroid. However, this mapping is not very helpful in explaining
how the input features in x determine the cluster. Also, precisely characterizing
the cluster regions (Voronoi cells in D dimensions!) is complicated.

◮ For other clustering methods (e.g. spectral clustering) a natural out-of-sample
mapping is much harder to determine.

◮ For these reasons, we want to determine an out-of-sample mapping that is
interpretable, and in a way that is agnostic to how the clustering cost is defined,
so it is generally applicable.



Decision trees as out-of-sample mapping

Decision trees have several attractive properties in this context:

◮ They naturally handle multiple classes.

◮ By using multiple leaves per class, they can model nonconvex and even
disconnected classes.

◮ They make the clustering hierarchical, i.e., they define a nested set of clusters.

◮ As long as the number of nodes is not very large, they are globally interpretable
by simple inspection of the nodes and the features they involve, without the need
of any approximation or external explanation method.

◮ Each leaf can be described by a rule (given by the root-leaf path).



Modeling capacity:

Axis-aligned trees Oblique trees

x32 < 1.2

x51 < −2.0

x2 ≥ 3.4

x9 < 1.0

x20 ≥ 1.1

◮ Only 5 features participate in the routing
function of the above leaf.

◮ Max order of feature interactions is limited
by the depth ∆ in axis-aligned trees.

xTw1 < 3.2

xTw2 ≥ 0.5

◮ Each decision node is a function of all
the features.

◮ Their non-linear combination is a
much more complex order-D
interaction.

◮ As out-of-sample mapping, sparse
oblique trees should have better
modeling capacity while remaining
small and interpretable.



Illustration on k-means for a toy example in 2D

k-means clustering
and Voronoi cells

Axis-aligned tree
with k leaves
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Figure: Toy example in 2D with K = 4 clusters. Cost is defined as the percentage increase
from the reference k-means clustering.



Illustration on k-means for a toy example in 2D

k-means clustering
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Illustration on k-means for a toy example in 2D

k-means clustering
and Voronoi cells

Axis-aligned tree
with k leaves

Axis-aligned tree
with 2k leaves

Sparse oblique tree
with k leaves
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Figure: Toy example in 2D with K = 4 clusters. Cost is defined as the percentage increase
from the reference k-means clustering.



k-means case: an exact oblique tree

For the special case of k-means, an exact representation of the clustering
out-of-sample mapping can be done with a (deep) oblique tree, but not with an
axis-aligned tree.
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Trade off accuracy with the interpretability of the out-of-sample mapping

But our goal here is to trade off optimally the clustering accuracy (according to a
specific clustering criterion) with the interpretability of the clustering out-of-sample
mapping, having the form of a small oblique tree with sparse hyperplane splits.
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Clustering problem formulation

min
Z,Ψ

E (Z,Ψ) s.t. ZT1 = 1, Z ∈ {0, 1}K×N (1)

◮ Input is a training set XD×N = (x1, . . . , xN) and seeking K clusters.

◮ The assignment variables ZK×N = (z1, . . . , zN) indicate which cluster each
instance xn is assigned to, encoded as one-hot vectors.

◮ The variables Ψ include any other variables learnt by the algorithm, for example
the cluster centroids in k-means.

◮ E (Z,Ψ) is a cost function defining the goodness of a clustering. For example:

E (Z,Ψ) =

N
∑

n=1

K
∑

k=1

zkn d(xn,ψk), (2)

ψ1, . . . ,ψK ∈ R
D and d is a distance function, corresponds to centroid-based

methods, such as k-means, spherical k-means, k-medoids, k-medians etc.



Interpretable clustering problem formulation

We now solve problem (1) but demand that the cluster assignments zn be produced by
an out-of-sample mapping T(xn;Θ), a classification tree with parameters Θ. That is:

min
Ψ,Θ

E (T(X;Θ),Ψ) + λφ(Θ) (3)

◮ T(·;Θ): R
D → {1, . . . ,K} (one-hot encoded)

◮ We consider either an axis-aligned tree or an oblique tree.

◮ As for the leaf predictors, we consider either a class label or a histogram over
classes (where the most frequent class is the final prediction).

◮ The regularization term φ(Θ) with user parameter λ ≥ 0 controls the tree
complexity.



Interpretable clustering problem formulation

◮ This is a difficult optimization problem because the tree T is not a differentiable
function of Θ, and appears as an argument of the nonlinear function E .

◮ We rewrite (3) as a constrained problem by introducing the assignment variables:

min
Z,Ψ,Θ

E (Z,Ψ) + λφ(Θ)

s.t. Z = T(X;Θ), ZT1 = 1, Z ∈ {0, 1}K×N .
(4)



Interpretable clustering: optimization algorithm

◮ We apply a penalty method to the equality constraints in (4) that involve T
(leaving the other constraints in place) and define the problem:

min
Z,Ψ,Θ

E (Z,Ψ) + λφ(Θ) + µP(Z,T(X;Θ))

s.t. ZT1 = 1, Z ∈ {0, 1}K×N

(5)

◮ where µ ≥ 0 is a penalty parameter and P is a penalty function satisfying
P(z, z) = 0 and P(z, z′) > 0 if z 6= z′. The notation P(Z,T(X;Θ)) stands for
P(z1,T(x1;Θ)) + · · ·+ P(zN ,T(xN ;Θ)).

◮ If µ→∞ then (4) and (5) have the same solutions.

◮ The objective of (5) becomes progressively ill-conditioned (hence harder to
optimize numerically) as µ increases.

◮ Thus, rather than optimizing (5) directly for a very large value of µ, we follow a
path of solutions starting from small µ, as is common with quadratic-penalty and
other homotopy methods.



Interpretable clustering: Alternating Optimization

For a fixed value of µ, we optimize (5) using alternating optimization over the
clustering variables (Z,Ψ) and the tree parameters Θ:

◮ Clustering step (over Z,Ψ given Θ):

min
Z,Ψ

E (Z,Ψ) + µ

N
∑

n=1

P(zn, zn) s.t. ZT1 = 1, Z ∈ {0, 1}K×N (6)

where zn = T(xn;Θ) is a constant vector for n = 1, . . . ,N. This can be seen as
the original clustering problem (1) but with a regularization term that pulls the
assignments Z towards Z. This step can be usually solved using a modified
version of the original unconstrained clustering.



Interpretable clustering: Alternating Optimization

◮ Tree step (over Θ given Z,Ψ):

min
Θ

N
∑

n=1

P(zn,T(xn;Θ)) +
λ

µ
φ(Θ). (7)

This takes the form of a classification problem with loss P , tree classifier T and
regularization φ, which we can solve using the Tree Alternating Optimization
(TAO) algorithm.



Why Learning a Tree with Tree Alternating Optimization (TAO)?

◮ We use a recent Tree Alternating Optimization (TAO) to solve the tree step
subproblem, because:
◮ It can directly optimize the objective function (eq. (7)).
◮ It can learn the structure of the tree and the parameters at the nodes.
◮ It can take an initial tree and improve over it, so the tree step decreases the overall

objective function in (5) (i.e., warm-start).
◮ It is computationally efficient.

◮ The traditional, recursive partitioning algorithms, such as CART or C4.5, are
inadequate because:
◮ They grow a tree greedily from scratch rather than improving a given tree.
◮ They are also quite suboptimal, particularly with oblique trees.

◮ “Optimal tree” algorithms (e.g. based on mixed-integer optimization and
branch-and-bound) do not scale beyond toy datasets and tiny trees.



Overview of Tree Alternating Optimization (TAO)

◮ The underlying mechanism of TAO is to take a parametric tree of fixed structure
(here, complete of depth ∆), and perform optimization steps in turn over the
parameters of a single node (decision node or leaf) while keeping the rest of the
parameters fixed.

◮ It works quite similar to how one would optimize a neural network, but instead of
gradients (which do not apply) TAO uses alternating optimization on a fixed tree
structure.

TAO is based on two theorems:

◮ Eq. (7) separates over any subset of non-descendant nodes (e.g. all the nodes
at the same depth); this follows from the fact that the tree makes hard decisions.

◮ Optimizing over the parameters of a single node i simplifies to a well-defined
reduced problem over the instances that currently reach node i (the reduced
set Ri ⊂ {1, . . . ,N}).



Overview of Tree Alternating Optimization (TAO)

The form of the reduced problem depends on the type of node:

Decision node It is a weighted 0/1 loss binary classification problem, where the
two classes correspond to the left and right child, and we want the
decision node to learn to send points to the best child. For oblique nodes
this problem is NP-hard but can be well approximated with a convex
surrogate; we use ℓ1-regularized logistic regression. For axis aligned splits
the optimal solution is found by enumeration.

Leaf The reduced problem consists of optimizing the original loss but over the
leaf classifier on its reduced set:

min
θi

∑

n∈Ri

P(zn,θi ). (8)

For the two penalty functions that we consider (0-1 loss and squared
error) the solution is either a majority label or a normalized histogram.



Overview of Tree Alternating Optimization (TAO)

◮ Given an initial tree structure with initial parameter values, the resulting algorithm
repeatedly visits nodes in reverse breadth-first search order.

◮ Each iteration trains all nodes at the same depth (in parallel) from the leaves to
the root, by solving either an ℓ1-regularized logistic regression for oblique splits or
by enumeration in axis-aligned case, or the exact solution at each leaf.



Pseudocode of the joint optimization framework for interpretable clustering

input XD×N = {x1, · · · , xN}, λ ≥ 0, a > 0, µ0 > 0
initial tree structure and random Θ

Z,Ψ← argminE (Z,Ψ) s.t. ZT1=1, Z∈{0,1}K×N Free clustering

Θ←

{

argminP(Z,T(X;Θ)), λ = 0

0, λ > 0
Direct tree fit

µ← µ0

repeat

Z,Ψ← argminE (Z,Ψ) + µP(Z,T(X;Θ)) Clustering step

s.t. ZT1 = 1, Z ∈ {0, 1}K×N

Θ← P(Z,T(X;Θ)) + λ
µ
φ(Θ) Tree step

µ← µ · a
until Z = T(X;Θ) and no parameter change
return tree T(·;Θ) and Z,Ψ



Experiments: the benefit of joint optimization

k-means on Spherical k-means on
MNIST dataset Web of Science dataset
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Figure: The plots of the k-means and spherical k-means objectives for MNIST and Web of
Science datasets as our joint optimization algorithm progresses over the µ schedule. Each point
shows the clustering objective when the cluster assignments are given by a sparse oblique tree.
The initial points are the direct fit of TAO to the free clustering assignments.



Experiments: quantitative comparison

Method cost (%) #parameters #features/node ∆ #leaves

IMM 14.34 28 1 9 10
Ex-Greedy 12.48 28 1 8 10
CART 11.54 28 1 4 10

M
N
IS
T

(6
0
k,
7
8
4
,1
0
)

TAO oblique 7.90 199 23 4 9
CART 1.87 3070 1 16 1024
ExKMC 1.81 3070 1 29 1024
TAO oblique 1.50 753 66 5 12
TAO oblique 0.94 1372 96 4 15

IMM 35.02 76 1 25 26
CART 30.61 76 1 10 26
ExGreedy 27.78 76 1 21 26

L
et
te
r
(2
0
k,
1
6
,2
6
)

TAO oblique 9.94 523 15 5 32
TAO oblique 4.06 516 8 6 52
CART 2.89 3070 1 25 1024
ExKMC 2.91 3070 1 39 1024
TAO oblique 2.75 858 12 6 64



Experiments: sparser tree on Fashion MNIST
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Figure: The tree results from λ = 100.0, ∆ = 5 and has a distortion of 5.22% from the free
k-means clustering objective.



Experiments: denser tree on Fashion MNIST
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k-means clustering objective.



Experiments: clustering tree for documents
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Conclusion

◮ We have proposed a way to redefine any clustering method defined by a cost
function of the cluster assignments, by constraining the latter to be produced by
an interpretable out-of-sample mapping.

◮ The mapping is given by a sparse oblique decision tree, which is far more powerful
than the usual axis-aligned trees, particularly with high-dimensional data.

◮ The tree makes it possible to explain how a prediction was arrived at by simple
inspection.

◮ In our experiments we have demonstrated this with k-means-type methods, but
the approach applies to other clustering methods defined by a cost function.
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