
Softmax Tree: An Accurate, Fast Classifier
When the Number of Classes Is Large

A. Zharmagambetov, M. Gabidolla, M. Á. Carreira-Perpiñán

Dept. of Computer Science & Engineering
University of California, Merced

EMNLP 2021

Problem motivation

The goal in extreme (or extra) classification is to train classifiers on
datasets with large number of label set (i.e., large number of classes).

Some examples:

- Language modeling: ≈171k words in the Oxford English Dictionary →
171k classes and grows as we include all forms of a word, names,
acronyms, etc.

- Website categorization given its content. Open Directory Project
contains >1M website categories. So, automatically tagging a website
will require identifying a subset of categories relevant to it.

- Recommending a shopping item in e-commerce where each of the
selling item (e.g. on Amazon) is a separate class label.

Problem motivation

The goal in extreme (or extra) classification is to train classifiers on
datasets with large number of label set (i.e., large number of classes).

Some examples:

- Language modeling: ≈171k words in the Oxford English Dictionary →
171k classes and grows as we include all forms of a word, names,
acronyms, etc.

- Website categorization given its content. Open Directory Project
contains >1M website categories. So, automatically tagging a website
will require identifying a subset of categories relevant to it.

- Recommending a shopping item in e-commerce where each of the
selling item (e.g. on Amazon) is a separate class label.

Research question: how to efficiently predict one (or several) of K
classes in sub-linear time and how to efficiently train such models?

Why sub-linear time?

Family of functions with decreasing prediction time:

O(n) O(log n)

softmax
one-vs-all

CART
LOMTree
· · ·· · ·

Obvious way to speed-up – use hierarchical models, e.g. CART [1],
LOMTree [2], Nested dichotomies [4], etc.

Other approaches have been studied as well: using hashing
techniques [6], class/data subsampling [5], etc.

Proposed model: Softmax Tree (ST)

f1(x) < 0 f1(x) ≥ 0

f2(x) < 0 f2(x) ≥ 0 f3(x) < 0 f3(x) ≥ 0

ezi

k∑

j=1

e
zj

ezi

k∑

j=1

e
zj

ezi

k∑

j=1

e
zj

ezi

k∑

j=1

e
zj

Sparse oblique decision nodes: fi(x) = wT

i
x+ bi in the above figure.

Sparse linear softmax leaves where each leaf focuses only on k ≪ K

classes (K total number of classes).

Proposed model: Softmax Tree (ST)

Family of functions with decreasing prediction time:

O(n) O(log n)

softmax
one-vs-all

CART
LOMTreeST

Proposed model: Softmax Tree (ST)

Family of functions with decreasing prediction time:

O(n) O(log n)

softmax
one-vs-all

CART
LOMTreeST

This provides speedup of O(K

∆+k
) ≈ O(K

k
) compared to one-vs-all

while still being accurate!

Related models have been proposed in Daumé III et al. 2017 [3], Sun
et al. 2019 [7], etc. However, no sparsity and different training
methods.

Model optimization

STs are hard to train: nonconvex, nondifferentiable, discontinuous.

Traditional tree learning algorithms are greedy: CART, C4.5, etc.

Model optimization

STs are hard to train: nonconvex, nondifferentiable, discontinuous.

Traditional tree learning algorithms are greedy: CART, C4.5, etc.

We use Tree Alternating Optimization (TAO): non-greedy, generally
finds better optima, has shown a huge success in training various
tree-based models [8, 9].

Model optimization

STs are hard to train: nonconvex, nondifferentiable, discontinuous.

Traditional tree learning algorithms are greedy: CART, C4.5, etc.

We use Tree Alternating Optimization (TAO): non-greedy, generally
finds better optima, has shown a huge success in training various
tree-based models [8, 9].
Assuming a tree structure T is given (say, binary complete of depth
∆), consider the following regularized objective:

E(Θ) =

N∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

‖θi‖1

given a training set {(xn,yn)}
N
n=1. Θ = {θi}i∈N is a set of

parameters of all tree nodes. The loss function L(y, z) is
cross-entropy (TAO was originally proposed for misclassification loss).

Alternating optimization and separability condition

Any set of non-descendant nodes of a tree can be optimized
independently:

Ri–reduced set

Fixed

Reduced problem over decision node

Evaluate loss induced by left/right subtrees;

Generate pseudolabel for each instance in reduced set Ri;

Solve weighted binary classification problem (linear):

x ∈ Ri

Lleft(x) Lright(x)

Reduced problem over a leaf

Actual model prediction is given by leaves;

min
θi

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn;θi)) + α ‖θ‖
i

where gi is a predictor function at each leaf: gi(x;θi): R
D → R

k and
it is restricted to have k classes.

Solution: first estimate the k classes (out of K possible classes) as
the k most populous classes in Ri. Then we train the softmax, which
is a convex problem.

Pseudocode

input training set {(xn, yn)}Nn=1;
initial tree T(·;Θ) of depth ∆ with parameters Θ = {θi};
N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively;
generate Ri (instances that reach node i) using an initial tree;
repeat

for d = ∆ down to 0
parfor i ∈ Nd

if i is a leaf then

Ri ← instances of the most populous k classes in Ri

θi ← fit a linear classifier on Ri

else

generate pseudolabels yn for each point n ∈ Ri

θi ← fit a weighted binary classifier on Ri

update Ri for each node
until stop
return T

Practicalities: dealing with zero probabilities

x ∈ Ri

Pl(y|x) = 0 Pr(y|x)

Practicalities: dealing with zero probabilities

x ∈ Ri

Pl(y|x) = 0 Pr(y|x)

This is quite possible given k ≪ K. But log Pl(y|x) = log 0 = −∞.

Possible ways to resolve:

Remove from the reduced problem → poor performance.
Replace loss=∞ by loss=β (e.g. 100, 107) → performs well but
requires tuning β.
Use 0/1 loss to compute pseudolabels → slightly worse than previous
option but requires no hyperparameter. Default choice.

Practicalities: obtaining an initial tree

Default option:

Complete binary tree of depth ∆ (s.t. k × L ≥ K, where L is the
number of leaves) with random parameters at each node;
Generate reduced set R based on random parameters → run TAO;
Simple to implement and performs well in practice.

Practicalities: obtaining an initial tree

Default option:

Complete binary tree of depth ∆ (s.t. k × L ≥ K, where L is the
number of leaves) with random parameters at each node;
Generate reduced set R based on random parameters → run TAO;
Simple to implement and performs well in practice.

Better option: clustering based initialization.

Experiments: document classification

Method top-1 ∆ inf.(ms) size(GB)

RecallTree [3] 92.64 15 0.97 0.8
one-vs-all 85.71 0 10.70 53.5
MACH [6] 84.80 – 252.64 1.3
(π, κ)-DS [5] 78.02 – 10.33 0.01

w
ik

i–
sm

a
ll
(1

M
,3
8
0
k
,3
7
k
)

ST(k = 100) 77.26 7 0.33 0.03
ST(k = 150) 76.33 8 0.57 0.05
ST+(k = 150) 75.65 8 0.52 0.05

RecallTree [3] 94.64 6 8.42 3.4
LOMTree [2] (93.46) (17) (0.26) –
one-vs-all 89.22 0 1317.58 155.7
(π, κ)-DS [5] 86.31 – 36.41 1.0

O
D
P
(1

.6
M

,4
2
3
k
,1
0
5
k
)

MACH [6] 84.55 – 684.04 1.2
ST(k = 300) 83.78 9 9.59 0.1
ST+(k = 300) 81.84 9 9.87 0.1

+ means ∞ loss was replaced with β.

Experiments: language modeling

Results on Penn Treebank:

Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-appox 78.3 / 64.1 184 (100%) 18 0.097
HSM 77.7 / 63.1 184 (100%) 18 0.372
softmax 74.3 / 54.8 96 (100%) 0 0.346
ST(k=50) 75.2 / 57.3 9 (59%) 8 0.046
ST(k=100) 75.0 / 56.8 13 (64%) 7 0.045
ST(k=200) 74.9 / 56.2 18 (70%) 6 0.067
ST(k=400) 74.7 / 55.9 24 (76%) 5 0.066
ST(k=800) 74.5 / 55.5 33 (81%) 4 0.069
ST*(k=800) 74.5 / 55.5 145 (100%) 4 0.069

* means that smoothing was applied to replace 0 probabilities with
some small epsilon and renormalize the output.

Conclusion

We have proposed Softmax Tree (ST) – a sparse oblique decision tree
with small linear softmax classifier at each leaf.

It uses modified TAO algorithm combined with special initialization.

STs strike a balance between having a single softmax (or one-vs-all)
classifier and a decision tree with a single class at each leaf.

The best performance is achieved by tuning the depth of the tree and
the number of classes per leaf softmax.

It results in classifiers that are both more accurate and much faster
than a regular softmax or other hierarchical softmax approaches in
many-class problems.

Future works: forests of STs, growing the tree structure adaptively,
etc.

Work supported by NSF award IIS–2007147

References

[1] L. J. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, Calif., 1984.

[2] A. E. Choromanska and J. Langford. Logarithmic time online multiclass prediction. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems (NIPS), volume 28. MIT Press, Cambridge, MA, 2015.

[3] H. Daumé III, N. Karampatziakis, J. Langford, and P. Mineiro. Logarithmic time one-against-some. In
D. Precup and Y. W. Teh, editors, Proc. of the 34th Int. Conf. Machine Learning (ICML 2017), pages
923–932, Sydney, Australia, Aug. 6–11 2017.

[4] E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-class problems. In Proc. of the 21st
Int. Conf. Machine Learning (ICML’04), pages 305–312, Banff, Canada, July 4–8 2004.

[5] B. Joshi, M. R. Amini, I. Partalas, F. Iutzeler, and Y. Maximov. Aggressive sampling for multi-class
to binary reduction with applications to text classification. In I. Guyon, U. v. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems (NIPS), volume 30. MIT Press, Cambridge, MA, 2017.

[6] T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. Extreme classification in log
memory using count-min sketch: A case study of Amazon search with 50M products. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems (NEURIPS), volume 32, pages 13265–13275. MIT Press, Cambridge,
MA, 2019.

[7] W. Sun, A. Beygelzimer, H. Daum’e III, J. Langford, and P. Mineiro. Contextual memory trees. In
K. Chaudhuri and R. Salakhutdinov, editors, Proc. of the 36th Int. Conf. Machine Learning (ICML 2019),
pages 6026–6035, Long Beach, CA, June 9–15 2019.

[8] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Smaller, more accurate regression forests using tree
alternating optimization. In H. Daumé III and A. Singh, editors, Proc. of the 37th Int. Conf. Machine
Learning (ICML 2020), pages 11398–11408, Online, July 13–18 2020.

[9] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Learning a tree of neural nets. In Proc. of the IEEE
Int. Conf. Acoustics, Speech and Sig. Proc. (ICASSP’21), pages 3140–3144, Toronto, Canada, June 6–11
2021.

	References

