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1 Abstract
NLP tasks such as language models or document classification involve classi-

fication problems with thousands of classes. In these situations, it is difficult to

get high predictive accuracy and the resulting model can be huge in number

of parameters and inference time. A recent, successful approach is the soft-

max tree (ST): a decision tree having sparse hyperplane splits at the decision

nodes (which make hard, not soft, decisions) and small softmax classifiers at

the leaves. Inference here is very fast because only a small subset of class

probabilities need to be computed, yet the model is quite accurate. However, a

significant drawback is that it assumes a complete tree, whose size grows ex-

ponentially with depth. We propose a new algorithm to train a ST of arbitrary

structure. The tree structure itself is learned optimally by interleaving steps

that grow the structure with steps that optimize the parameters of the current

structure. This makes it possible to learn STs that can grow much deeper but

in an irregular way, adapting to the data distribution. The resulting STs im-

prove considerably the predictive accuracy while reducing the model size and

inference time even further, as demonstrated in datasets with thousands of

classes. In addition, they are interpretable to some extent.
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2 Softmax Tree (ST)
• Each decision node i ∈ Ndec has a decision function gi(x;θi):

“if wT
i x + wi0 ≥ 0 then gi(x) = righti, otherwise gi(x) = lefti”

• Each leaf j ∈ Nleaf contains a softmax function fj(x;θj) = σ(Wjx + wj0) that

predicts a set of k ≤ K classes.

• Training is done using Tree Alternating Optimization (TAO): general

method for optimizing a given objective function over a given decision tree

model

• Assumes a complete tree structure, whose size grows exponentially with

depth, and this limits their power in both accuracy and inference time
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Given a Softmax Tree τ (x;Θ) of fixed structure (e.g. a complete tree of depth

∆) and initial parameters (e.g. random), the goal of TAO is to minimize the

following objective:

E(Θ) =
N
∑

n=1

L(yn, τ (xn)) + λ
∑

i∈Ndec

‖wi‖1 + µ
∑

j∈Nleaf

∥

∥Wj

∥

∥

1

where L(·, ·) is the cross-entropy loss, Θ = {wi,wi0}i∈Ndec
∪ {Wj,wj0}j∈Nleaf

are

the set of all learnable model parameters, and there is an ℓ1 penalty over the

weight vectors to promote sparsity via hyperparameters λ, µ ≥ 0.

3 Adaptive Softmax Tree (AST)
• Improve accuracy and inference of ST by exploring deeper structures

• The inference time for a leaf j is O(D(∆j + kj)). The improvement is in

much smaller values of kj at the expense of slightly large values of ∆j (thin

softmaxes in deep leaves).

• The training of AST consists of two steps: regular step and expansion step

Algorithm starts with a small ST (e.g. ∆ = 2) and large leaf softmaxes k0.

Regular step include optimizing ST of current structure τ (·;Θ) using TAO:

• For a decision node i ∈ Ndec reduced problem is a weighted 0/1 loss

binary classification problem:

Ei(wi,wi0) =
∑

n∈Ri

cn L(yn, gi(xn)) + λ ‖wi‖1

where L(·, ·) is the 0/1 loss, yn ∈ {lefti, righti} is a pseudolabel indicating

the “best” child and cn ≥ 0 is the loss difference between the “other” child

and the “best” one for the instance xn.

• For leaf node j ∈ Nleaf:

Ej(Wj,wj0) =
∑

n∈Rj

L(yn, fj(xn)) + µ
∥

∥Wj

∥

∥

1

where L(·, ·) is the original cross-entropy loss

Expansion step on the current leaf replaces is with shallow ST with narrower

softmaxes:

• Softmax contraction coefficient α controls shrinkage of leaf softmaxes after

each expansion

• Tolerance ratio ρ controls performance of the expanded subtree

• The expansion move allows us to compare the objective function before

and after the expansion in order to decide whether or not we should

pursue a new architecture

input training set {xn, yn}
N
n=1, initial depth ∆0,

softmax contraction coefficient α ∈ (0,1),
tolerance ratio for node expansion ρ > 1.

k0← αK

initialize τ (·;Θ) of depth ∆0 and k0-class leaves;

fit τ (·;Θ) using TAO;

repeat

update reduced sets Rj for all j ∈ Nleaf;

for j ∈ Nleaf

initialize ST τ̂ j(·; Θ̂j) of depth ∆ = 1 or 2

and with (αkj)-class softmax leaves;

fit τ̂ j(·; Θ̂j) using TAO on {xn, yn}n∈Rj
;

if
loss(τ̂ j(·;Θ̂j))

loss(fj(·;θj))
< ρ then accept the expansion of leaf j

end for
update the tree τ (·;Θ) and reoptimize with TAO;

until no changes to the tree structure

return adaptively grown τ (·;Θ)

4 Experiments Results
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Figure 1: AST for the Wiki-Small subs. dataset. Size of the blue nodes (on the tree) shows

the actual number of classes in the leaves after pruning. Green (left column) shows

theoretical max. values at each aligned depth.

Method Etest% ∆ L k̄ inf.(µs) FLOPs
Softmax 13.0 – – – 411 128000
ST∗(k = 90) 12.3 7 126 64.9 24 1493

A
L

O
I

ST(k = 75) 12.0 6 64 74.9 29 1871
ST(from AST) 12.8 8 177 38.4 18 1102
AST∗(α=0.75,ρ=1.01) 9.9 10 326 23.8 15 1016
Softmax 61.4 – – – 10680 423722
ST(k = 70) 62.7 7 128 70.0 65 12279

L
S

H
T

C
1

ST(k = 50) 61.2 8 256 49.4 55 9218
ST(from AST) 68.7 9 511 49.7 62 9388
AST∗(α=0.9,ρ=1.2) 60.8 10 1006 11.5 40 3756
Softmax 50.2 – – – 16500 9214
ST∗(k = 4) 51.5 8 30 4.6 36 691
AST∗(α=0.35,ρ=1.2) 49.5 11 73 4.1 16 586
ST∗(k = 9) 48.3 8 50 8.0 27 918
AST(α = 0.38, µ = 0.1)46.9 11 13 44 8.4 791
ST(k = 13, µ = 0.1) 48.3 8 13 40 12.1 1104
AST∗(α=0.39,ρ=1.2) 47.5 11 34 11.7 12 929
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ST(k = 67, µ = 0.01) 48.4 8 21 256 8.11 2291
ST(k = 95) 44.1 8 256 5.7 30 3065
ST(from AST) 44.0 8 65 12.5 19 3296
AST(α=0.69,ρ=1.2) 42.7 13 184 2.8 13 1437

Table 1: AST vs ST. We report: test errors; depth ∆, number of leaves L, average leaf

softmax size k̄ of the tree; and average inference time and FLOPs per test instance. For

ST we specify its leaf softmax size k , for AST the softmax contraction coefficient α and

tolerance ratio of expansion ρ. ASTs are trained with µ = 0.01 or (if marked with ∗) µ = 0.1.
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Figure 2: 0/1 loss of the final AST model for training (dashed line)

and test (solid line), compared with the complete Softmax Tree.

The arrows point to where expansions of the AST happened. The

line colors indicate the performance of the ST (blue), ST(AST)

(green) and AST (red). This shows that the adaptive growth

gradually enhances the performance of the model on both

training and test tests (red solid and dashed lines). On the other

hand, a ST initialized randomly (blue line) or on the final structure

of AST (green line) is unable to improve after a certain number of

iterations.

Method Etest(%) ∆ inf.(µs) PPL (%nnz)

HSM 91.1 18 421 575 (100%)

one-vs-all 87.5 0 705 220 (100%)

ST(k = 50) 86.5 8 58 17 (44%)

ST(k = 100) 86.5 7 58 27 (51%)

ST(k = 400) 86.4 5 64 71 (67%)

AST(α = 0.3) 86.4 12 17 10 (37%)

AST(α = 0.4) 86.1 12 18 13 (44%)

AST(α = 0.5) 86.2 11 19 24 (51%)

AST(α = 0.75) 86.3 12 20 7 (33%)
Table 2: Results on the language modeling dataset PTB. We

report test error, depth ∆ of the tree, the average inference time

per sample in microseconds and the average perplexity (PPL)

over the test set instances for which the model outputs nonzero

probability. The percentage of such instances is shown in

parenthesis. For AST models ρ = 1.0.


