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Abstract

Recent vears have seen a renewed interest in inter-
pretable machine learning, which seeks insight into how
a model achieves a prediction. Here, we focus on the

relatively unexplored case of interpretable clustering.
In our approach, the cluster assignments of the training
instances are constrained to be the output of a decision
tree. This has two advantages: 1) it makes it possible
to understand globally how an instance is mapped to

a cluster, in particular to see which features are used
for which cluster; 2) it forces the clusters to respect

a hierarchical structure while optimizing the original
clustering objective function. Rather than the tradi-
tional axis-aligned trees, we use sparse oblique trees,
which have far more modelling power, particularly with

high-dimensional data, while remaining interpretable.

Our approach applies to any clustering method which

is defined by optimizing a cost function and we demon-

strate it with two k-means variants.
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Defining “Interpretable” Clustering

* We aim at explaining how an input instance x &
RP (not necessarily in the training set) is mapped to

a particular cluster. We call this the out-of-sample

mapping.

* The optimal out-of-sample mapping for k-means is
eiven by assigning the instance x to its closest centroid.
But this mapping is not very helpful in explaining how
the input features in x determine the cluster.

* For other clustering methods (e.g. spectral cluster-
ing) a natural out-of-sample mapping is much harder
to determine.

* Therefore, we want to determine an out-of-sample
mapping that is interpretable, and in a way that is
agnostic to how the clustering cost is defined, so it is
cenerally applicable.

Joint optimization algorithm

* We consider clustering algorithms defined by a cost
function E. and demand the cluster assignments come
from a classification tree T(x,®). To jointly learn
both clustering W and tree ® parameters:

pin E(T(X;©). W) +26(@). (1

* We rewrite this as a constrained problem using as-

sienment variables Z:

min E(Z, W)+ Ap(O) s.t.
ZWV O (2)
Z=T(X;0), Z'1=1, Zec {01}V

We apply a penalty method to the equality con-
straints that involve T and define the problem:

min E(Z, W)+ \¢(O) + uP(Z, T(X; O))

ZV 0O
Z c {0,1}"N,

3
st. Z'1=1, 3

where > 0 is a penalty parameter and P is a penalty
function satisfying P(z,z) = 0 and P(z,Z') > 0 if
z + 7. If 4 — oo then both have the same solutions.
We tollow a path of solutions starting from small pu,
and for each u, we perform alternating optimization:
* Clustering step (over Z, W given @):

N
min E(Z, W) + u > P(z,,Z,)
n=1

n
W —
st. Z"1=1, Z e {0,1}/N

where Z, = T(x,; @) is a constant vector for n =
1,...,N. This is very similar to the unconstrained

(4)

clustering problem, but with a regularization term

that pulls the assignments Z towards Z.
* Tree step (over @ given Z, W):
N A
mén Z ’D(zm T(Xn; @)) + ;¢(@) (5)
n=1

This takes the form of a classification problem with

loss P, tree classifier T and regularization ¢, which
we can solve using the Tree Alternating Optimization

(TAO) algorithm.

Axis-Aligned vs Oblique trees

the features.

® Only 5 features participate in the routing
function of the above leaf.

® Max order of feature interactions is lim-
ited by the depth A in axis-aligned trees.

® (Can model only axis-aligned boundaries.

o Ag

pretable.

e Fach decision node is a function of all

* Their non-linear combination is a much
more complex order-D interaction.
out-of-sample mapping,
oblique trees should have better modeling
capacity while remaining small and inter-

k-means clustering
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Experiment Results
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® Trees for k-means on FashionMNIST with different sparsity:.

e Top tree: A = 100.0, depth = 5, cost = 5.22%.

* Bottom tree: A = 10.0, depth = 4, cost = 0.44%.

* Decision nodes: weight vector visualized as a 28X 28 image.

* Red/blue pixels contribute sending points to the right /left.

* Leaves: visualizes the mean of images that reach it.

* The plots on the right: k-means objective during the algorithm run.
* Right side: free clustering (the mean image and number of points).
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* A tree for spherical k-means on the subset of Amazon Reviews.
* Top left plot: the clustering objective during the algorithm run.

® Decision nodes:

the words corresponding to the most posi-
tive/negative top 7 weights in red /blue (sorted by weight magnitude).
* nnz: number of nonzero weights (shown at the top of a node).

* Leaf: the histogram of product categories (shown horizontally).



