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1 INTRODUCTION
Decision forests (ensembles of decision trees) are widely recognized as among

the most accurate ML models for many tasks. However, neither the individual

trees nor the forest are constructed to optimize a specific loss function.

In a series of papers, we have given algorithms that optimize very general types

of losses (in the sense of monotonically decreasing the loss over iterations) over

a single tree (axis-aligned or oblique), in combination with popular ensembling

mechanisms (bagging, AdaBoost, gradient boosting), and here over all the forest

parameters jointly, in all cases consistently improving over the state-of-the-art

(such as XGBoost or LightGBM).
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2 SINGLE TREE: TREE ALTERNATING OPTIMIZATION (TAO)
A scalable algorithm that can take a tree of arbitrary but parametric form and

monotonically decrease an objective function of the form loss + regularization:

min
τ

∑

n

L(yn, τ (xn; {wi})) + λ
∑

i∈ nodes of τ

φ(wi) (1)

We focus on oblique trees (which are far more powerful than axis-aligned ones):

• Decision nodes: (sparse) hyperplane

• Leaf nodes: constant label or value

No gradient descent (the tree defines a piecewise constant function) but alternat-

ing optimization over the nodes. Based on two theorems:

• Separability condition: the objective function separates over nodes which are

not descendant of each other.
• Reduced problem over a node: optimizing over a node’s parameters takes a

special form that can be solved exactly or approximately:
• decision node: weighted 0/1 loss binary classification

• leaf node: majority vote or average

TAO operates on an initial tree structure. The final structure is usually a subset of

this because pruning occurs automatically via a ℓ1 penalty on the decision nodes’

weights: φ(wi) = ‖wi‖1. This also sparsifies the decision hyperplanes.

The table below shows how a single TAO tree improves upon the traditional CART

on test accuracy for several classification benchmarks:

Algorithm MNIST Letter SensIT Pendigits Spambase

CART 88.05 86.07 81.00 91.62 89.62

TAO 94.74 90.41 85.44 96.80 93.31

Examples of tree-based models trainable with TAO:

• [1]: sparse oblique tree

• [4]: tree of neural nets

• [7]: softmax tree

• [8]: nonlinear embeddings with trees

• [12]: semi-supervised learning with trees

• [11]: clustering with trees

3 FOREST: TAO + BAGGING/BOOSTING
Using TAO as base learner with any ensembling mechanism results in better

forests (higher accuracy, fewer trees):

• bagging [2], [3]

• AdaBoost [5], [6], [10]

• gradient boosting [9]

We use sparse oblique trees, which are a much stronger learner than the tradi-

tional axis-aligned trees:

• more powerful model: oblique rather than axis-aligned tree

• better optimization: TAO rather than CART/C5.0/etc.

This results in more accurate forests; the ensemble is diverse enough.

The table below shows how simple TAO trees in bagging outperform other estab-

lished tree ensembles for regression problems.
cpuact (N=8k,D=21) CT slice (N=54k,D=384)

Forest Etest T ∆

CART 3.63±0.32 1 25
Bagging-TAO 2.71±0.04 1 6
Random Forest 2.62±0.04 100 36
AdaBoost 2.61±0.16 100 10
Random Forest 2.60±0.01 1k 37
XGBoost 2.60±0.00 100 10
XGBoost 2.57±0.00 1k 10
AdaBoost 2.56±0.11 1k 10
Bagging-TAO 2.39±0.05 30 7

Forest Etest T ∆

CART 2.71±0.06 1 51
Bagging-TAO 1.54±0.05 1 7
AdaBoost 1.48±0.03 100 10
XGBoost 1.45±0.00 100 10
AdaBoost 1.31±0.01 1k 10
XGBoost 1.18±0.00 1k 10
Random Forest 1.03±0.01 100 71
Random Forest 0.97±0.01 1k 78
Bagging-TAO 0.89±0.02 30 7
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Figure: Comparison of methods for news20 dataset.

However, while each individual tree is well optimized, the forest is not. Trees are

added independently (bagging) or greedily (boosting).
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4 FOREST ALTERNATING OPTIMIZATION (FAO)

In this work, we take this one step further and optimize globally over all the parameters (decision & leaf nodes) of a forest having a

fixed number of trees of given structure, monotonically decreasing an objective function of the form loss + regularization:

min
τ 1,...,τ T

∑

n

L(yn,F(xn)) + λ

T∑

t=1

∑

i∈ nodes of τ t

φ(wti) (2)

where F(x) =
∑T

t=1 τ t(x) is a forest of T trees.

Alternating optimization over trees:

• If we fix all trees but one, the resulting problem over that tree can be optimized by TAO.

• Also, if we fix all the decision nodes of all the trees, the resulting problem over all the trees’ leaves can be optimized exactly.

As with a single tree, each individual tree’s structure is still pruned automatically via an ℓ1 penalty on the decision nodes’ weights.

τ1(x) τ2(x)

min
τ1





N∑

n=1

(

yn − (τ1(xn) + τ2(xn)︸ ︷︷ ︸
F (xn)

)

)2


⇔ min
τ1

[
N∑

n=1

(

yn − τ2(xn)︸ ︷︷ ︸

y1
n

−τ1(xn)

)2]
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FAO is very good at optimizing the model. The plot

shows how 30 trees trained with FAO can exceed

the training accuracy of 60 greedily added GB trees.

However, the resulting forest can easily overfit:

the plot shows the increasing test error of FAO

trained on 10 trees of various initialization.

To obtain better generalization we train multiple

small FAO forests on different random initializa-

tions, and just average their predictions.
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Some experiment results:
MNIST (N = 60k ,D = 784,K = 10) SUSY (N = 4.5M,D = 18,K = 2) casp (N = 45k ,D = 9)

Forest Etest (%) #pars. T ∆

SPORF 2.89±0.04 (143M) 1k 50

XGBoost 2.20±0.00 107k 1k 6

LightGBM 2.02±0.00 121k 1k 10

XGBoost 1.91±0.00 505k 10k 6

GB-TAO 1.65±0.02 3M 500 7

LightGBM 1.62±0.00 642k 10k 21

GB-TAO 1.55±0.02 7.2M 1.4k 7

avg-FAO 1.48±0.06 658k 60 6

avg-FAO 1.39±0.04 968k 90 6

avg-FAO 1.33±0.04 4.9M 300 8

Forest Etest (%) #pars. T ∆

SPORF 19.91 (271M) 100 102

SPORF 19.73 (2.7B) 1k 109

XGBoost 19.63 151k 300 8

XGBoost 19.62 196k 100 10

LightGBM 19.62 153k 100 23

LightGBM 19.60 230k 300 21

XGBoost 19.59 2.0M 1k 10

LightGBM 19.57 1.5M 1k 23

avg-FAO 19.51 233k 50 8

avg-FAO 19.50 459k 100 8

Forest Etest rmse #pars. T ∆

XGBoost 3.66±0.00 119k 100 10

XGBoost 3.58±0.00 793k 1k 10

LightGBM 3.54±0.00 153k 100 114

GB-TAO 3.49±0.01 256k 50 12

LightGBM 3.48±0.00 766k 1k 109

avg-FAO 3.45±0.02 359k 50 12

GB-TAO 3.43±0.00 481k 100 12

avg-FAO 3.40±0.01 711k 100 12

GB-TAO 3.39±0.01 887k 200 12

avg-FAO 3.37±0.01 1.4M 200 12


