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Abstract—Learning decision trees is a difficult optimization
problem: nonconvex, nondifferentiable and over a huge number
of tree structures. The dominant paradigm in practice, estab-
lished in the 1980s, are axis-aligned trees trained with a greedy
recursive partitioning algorithm such as CART or C5.0. Several
non-greedy optimization algorithms have been proposed recently,
which optimize all the nodes’ parameters jointly, and we compare
experimentally some of them in a range of classification and
regression datasets, in terms of accuracy, training time and tree
size. The non-greedy algorithms do not improve over CART
significantly with one exception, tree alternating optimization
(TAO). TAO scales to large datasets and produces axis-aligned
and especially oblique trees that consistently outperform all other
algorithms, often by a large margin. TAO makes oblique trees
preferable to axis-aligned ones in many cases, since they are
much more accurate while remaining small and interpretable.
This suggests a change in paradigm in practical applications of
decision trees.

I. INTRODUCTION

Decision trees occupy a special place in machine learning
and statistics. They are among the most interpretable models
(and can be understood as rules), they are very fast for
inference (since a single root-leaf path is followed), and they
handle nonlinear and multiclass problems naturally. Unfortu-
nately, they are also among the hardest models to learn: they
define a nonconvex, nondifferentiable objective function over
a huge space of tree structures; even the simplest case (axes-
aligned with binary inputs and output) is NP-hard [1]. While
many algorithms have been proposed, learning a tree from
data in practice has long been dominated by greedy recursive
partitioning algorithms (such as CART [2] or C5.0 [3]) applied
to axes-aligned (univariate) trees, and this is also true of tree
ensembles (forests), in spite of their known suboptimality,
as noted by multiple reviews [2], [4]–[6] and experimental
comparisons of trees and other algorithms [7], [8].

While CART and C5.0 date from the 1980s, many more
algorithms for learning trees have been proposed since. While
many of these are variations of CART having dubious merits,
in the last few years several non-greedy algorithms have been
proposed that try to optimize an objective function over all the
tree parameters. Do they make a difference in practice? We
explore this here on 8 representative tree learning algorithms
on 20 classification and 7 regression datasets of different type,
dimensionality and sample size, and report the accuracy, size
and training time of the resulting trees. We conclude that, in
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spite of the sometimes exaggerated claims of some papers,
these new algorithms do not significantly improve over CART
with one exception: tree alternating optimization (TAO).

Next, we briefly describe the algorithms (section II), sum-
marize our experimental results (sections III–IV, and discuss
them in light of how each algorithm works (section V). A
preliminary version of this paper appeared in [9].

II. THE ALGORITHMS

Due to the large and increasing amount of literature on
decision trees, it is impossible to cover all algorithms and
perform exhaustive evaluations between them. Therefore, we
focus on 1) popular, long-established methods that have stood
the test of time, and 2) recent representative methods. We
consider algorithms that train a single decision tree having
constant-label leaves and decision nodes that are either axis-
aligned (univariate) or oblique (linear, or multivariate). Below
we briefly describe the algorithms we evaluated. More details
can be found in the cited papers.

A. Greedy recursive partitioning algorithms

These are considered as the most popular approaches to
learn a tree; their roots are in the 1950s but became popular
in the early 80s. The basic idea in such algorithms is to
induce a decision tree from the top down according to some
heuristic splitting rule, and optionally prune it back afterwards.
The algorithm is greedy since it never looks back once a
node is split. When pruning the fully-grown tree, some nodes
are removed to optimize a cost-complexity criterion, but the
node parameters remain unchanged. Greedy algorithms are
generally very fast but they produce suboptimal trees [6].
• CART [2] is one of the most widely used algorithms for

training axis-aligned decision trees. It applies a greedy
recursive partitioning which optimizes a purity measure
(Gini index) at each node. When splitting a given node,
it enumerates all the features and thresholds to find the
split that maximally reduces the Gini index. It continues
to grow a tree up to a maximum depth and then prunes
nodes one by one until a cost-complexity criterion is met.

• C5.0 [3] is also widely used for axis-aligned trees. It has
undergone multiple versions (ID3, C4.5, C5.0) and differs
from CART in relatively minor details, such as the purity
measure (information gain).

• Oblique Classifier 1 (OC1) [10] considers a linear
combination of the input features (oblique trees). CART



[2] also did consider such trees and used coordinate
descent to optimize the purity measure at each split,
although this did not work robustly. OC1 adds some
improvements to this, such as random restarts.

• GUIDE (Generalized, Unbiased, Interaction Detection
and Estimation) is the most sophisticated of a series of
algorithms developed by Wei-Yin Loh [5], [11]. Like
CART, GUIDE grows a tree greedily and recursively,
but it adds many heuristics, in particular in how features
are selected (involving various statistical tests aimed at
eliminating variable selection bias) and the choice of the
split point. GUIDE can also learn oblique trees.

B. Non-greedy, global optimization algorithms

In contrast to greedy approaches, this type of algorithms
focuses on a joint optimization of the decision tree nodes
under a global objective function. One approach is to ignore
(during training) the discrete nature of the decision tree and
make it probabilistic (or soft), where an input is routed to each
leaf with a certain probability. Then the optimization becomes
amenable to gradient-based methods. The resulting tree is then
made hard again. We do not consider this since it is quite
suboptimal. Instead, we consider two methods that directly
optimize the decision tree with discrete decision nodes.
• CO2 [12] formulates a convex-concave upper bound on

the tree’s empirical loss and optimize it using stochas-
tic gradient descent. The initial tree structure must be
provided (e.g. from CART). The use of SGD enables
efficient optimization for large scale datasets, however
each iteration is not guaranteed to decrease the objective.

• TAO (Tree Alternating Optimization) [13], [14] optimizes
a decision tree with a predetermined structure. It applies
very generally: it handles different classification or re-
gression loss functions, both axis-aligned and oblique
decision trees (and other types of trees), and various
regularization terms such as `1.

We describe TAO in more detail. Suppose we have an initial
tree with some structure and parameter values (possibly ran-
dom). TAO minimizes the following objective function jointly
over the parameters Θ = {θi} of all nodes i of the tree:

E(Θ) =

N∑
n=1

L(yn, T (xn; Θ)) + λ
∑

i∈nodes

φi(θi) (1)

where {(xn, yn)}Nn=1 is a training set of D-dimensional real-
valued instances and their ground truth labels, L(·, ·) is the
loss function (e.g. cross-entropy, mean squared error, 0/1 loss,
etc.), T (x; Θ) is the predictive function of the tree, and φi are
regularization terms with hyperparameter λ ≥ 0. The basis of
the TAO algorithm is given by a separability condition: for any
nodes i and j (decision or leaves) that are not descendants of
each other (e.g. all nodes at the same depth) the error E(Θ)
in eq. (1) separates over θi and θj (assuming parameters of
all other nodes are fixed). Therefore, all such nodes can be
trained independently. The optimization over a single node is
made possible by equivalence to a reduced problem:

• Optimizing over a decision node i is done by training a
weighted binary classifier (with regularization λφi(θi))
over θi on the training instances {(xn, yn)} that currently
reach i (the reduced set). Each such instance xn is
assigned a weight and pseudolabel yn ∈ {−1,+1} based
on the child whose subtree gives the better prediction
for xn. A weight per sample is assigned because the
loss of the best child is different for each instance.
This step can be solved exactly for axis-aligned trees by
enumeration over all (feature, threshold) combinations, or
approximately for oblique trees via a surrogate loss.

• Optimizing over a leaf reduces to fitting the leaf’s model
to solve the original problem (1) on the reduced set. For
example, for constant-label leaves in classification, the
solution is the majority vote.

One pass over all nodes (e.g. in breadth-first order) defines
a TAO iteration, which is guaranteed to decrease or leave
unchanged the objective function (1). The computational com-
plexity per iteration is comparable to that of one CART run
(for axis-aligned trees) or to training ∆ linear SVMs (for
complete oblique trees of depth ∆).

TAO optimizes jointly all node parameters rather than
greedily. It works in a way that is similar to how most
other machine learning models are trained: one first fixes the
model architecture (the tree structure, e.g. a complete binary
tree of given depth) and iteratively optimizes its parameters
by monotonically decreasing E(Θ). With most models this
is done via gradient-based methods, but this is not possible
with decision trees, which are nondifferentiable. Instead, TAO
applies alternating optimization (over the parameters at each
node). Besides, with an `1 penalty over the nodes’ parameters,
nodes are automatically pruned when all its weights become
0. Hence, it is convenient to use a deep enough complete tree
structure and let TAO prune it as necessary.

C. Approximate brute force search via branch-and-bound

These approaches (e.g. [15]–[18]) try to optimize an objec-
tive such as (1) by brute force to find the globally optimum
tree (for special types of trees), for example using branch-and-
bound to eliminate parts of the search space (using running
bounds on the optimal objective function value). This still
has a worst-case exponential complexity. Since running it
to completion is intractable, the branch-and-bound search is
stopped early with an approximate solution.
• OCT (Optimal Classification Trees) [17] formulates the

optimization as a mixed-integer optimization (MIO) prob-
lem by using binary variables to encode it. This is then
solved via commercial MIO solvers. It handles axis-
aligned and oblique trees.

• GOSDT (Generalized and Scalable Optimal Sparse De-
cision Trees) [18] uses a custom branch-and-bound algo-
rithm instead of MIO solvers, including some accelera-
tions. It is restricted to axis-aligned trees having binary
inputs and outputs only (i.e., boolean functions). This
means any continuous features need to be discretized in
some way.



III. EXPERIMENTAL SETUP

A. Algorithms

• CART(R): we use a popular R implementation of CART,
rpart [19]. We let the tree grow up to a depth of 30
(the maximum rpart allows), by setting the “minsplit”
parameter to 1 and the complexity parameter “cp” to 0.
We then prune the tree by using rpart’s internal k-
fold cross-validation (k = 10) to get the list of pruning
parameters and choosing the best pruning parameter
based on the SE-1 rule (as suggested by the rpart
documentation).

• CART(Py): we also use the CART Python implementa-
tion in scikit-learn [20, version 0.22.2]. We let the tree
grow fully by setting the “minsplit” parameter to 1 and
the complexity parameter “ccp alpha” to 0. Next, we find
the best pruning parameter using k-fold cross-validation.

• C5.0: we use the single-threaded Linux version of the
authors’ C5.0 implementation (in C)1. For each of the
datasets, we apply a grid search on the k-fold validation
set to get the best parameters. Specifically, we tune “-c
CF”, which controls the pruning severity, and “-m cases”,
which is the minimum number of points to perform
a node split. We use the default options for all other
parameters. We have found that in many cases the tuned
parameters are not far away from the default settings.

• GUIDE: we use GUIDE version 32.3 provided by the
author in the form of executables2. For axis-aligned clas-
sification, we specify option (1), which gives univariate
splits a higher priority. For oblique trees, we choose
option (0), which gives linear splits a higher priority.
GUIDE for regression uses only axis-aligned splits. We
do not use the kernel and nearest neighbor node models
for classification and variants of linear regression used
in regression trees, because they are beyond the scope of
the conventional trees considered in this paper. We cross-
validated the following hyperparameters: estimated or
equal priors for a class distribution, mean or median based
cross validation, standard error for pruning, maximum
number of splits, and minimum node size. The latter two
had the largest effect on the tree structure and accuracy,
particularly for large datasets.

• OC1: we use the authors’ C implementation3. Since
it only supports classification, we do not report results
for regression with OC1. Its default purity measure is
the twoing criterion, and we did not try others (using
other purity measures requires changing and recompiling
the code). We choose the option where only oblique
hyperplanes are considered. During cross-validation, we
tune the number of random restarts and the number of
random jumps, since we found these hyperparameters
to have the most important effect (although, in some

1https://rulequest.com/download.html
2http://pages.stat.wisc.edu/∼loh/guide.html
3http://ccb.jhu.edu/software/oc1/oc1.tar.gz

datasets, we were not able to improve over their default
values).

• GOSDT: we use the C++ implementation and the Python
interface provided by the authors4. Although it supports
several different losses, we use only the misclassification
error. GOSDT has many different configuration options,
but because of its long training time, we could not
explore those during cross-validation. Therefore, for all
the experiments we use only the default hyperparameters.
One important parameter is the regularization term λ, and
its default value in the configuration documentation was
set to λ = 0.05.

• TAO: we implement both axis-aligned and oblique trees,
with constant leaves, in Python (version 3.5), without
parallel processing in a single CPU.
– Oblique: we take as initial tree a deep enough, com-

plete binary tree with random parameters at each
node. We use an `1-regularized logistic regression to
solve the decision node optimization (implemented in
LIBLINEAR [21]). We use a grid search on the k-fold
validation set to tune the λ parameter, which controls
the sparsity of the tree (C = 1/λ in LIBLINEAR).

– Axis-aligned: we use as initial tree structure a CART
tree. We use the scikit-learn implementation of the
CART algorithm and perform hyperparameter tuning
on a cross-validation set as for other methods.

We ran TAO until we reach 30 iterations or there is no
more training error decrease up to a threshold of 10−5.

• OCT and CO2: we report the results from the original
papers ( [17] and [12], respectively), since we could not
find any implementation available online.

We ran all experiments in a single Linux PC with the following
specifications: OS, Ubuntu 18.04 LTS; CPU, 8 × Intel Core
i7-7700 3.60GHz; memory, 16 GiB DDR4 3600 MHz.

B. Datasets

Table I summarizes the datasets we used. All are publicly
available. “MNIST-LeNet5” consists of 800 non-negative real-
valued features extracted by the “conv2” layer of the pre-
trained LeNet5 neural network [23] for all MNIST images.
For some of the UCI collection datasets which do not have a
separate test set, we shuffle the entire dataset and keep 20% of
the entire data as the test set. We repeat the training procedure
10 times for each dataset, reshuffling the training data each
time. We set a timeout of 2 hours’ runtime for all algorithms
on all datasets except for MNIST (both pixels and LeNet5),
for which we allow up to 8 hours to train a tree. Note that
we include datasets that are quite larger (in sample size and/or
dimensionality) than many existing works on decision trees.

IV. RESULTS

A. Classification

Tables II-III show the train/test average accuracy (in %) and
stdev over 10 repeats. Although we report the training error

4https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

https://rulequest.com/download.html
http://pages.stat.wisc.edu/~loh/guide.html
http://ccb.jhu.edu/software/oc1/oc1.tar.gz
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees


TABLE I
DATASETS USED IN OUR EXPERIMENTS (ALL FROM THE UCI COLLECTION

[22] UNLESS INDICATED BY A FOOTNOTE). N IS SAMPLE SIZE, D IS
FEATURE DIMENSIONALITY AND K IS OUTPUT DIMENSION FOR
REGRESSION AND NUMBER OF CLASSES FOR CLASSIFICATION.

Dataset Ntrain Ntest D K

Iris 120 30 4 3
Wine 142 36 13 3
Dermatology 293 73 34 6
Balance scale 500 125 4 3
Breast Cancer 559 140 9 2
Blood Trans 598 150 4 2
German 800 200 20 2
Banknote auth 1098 274 4 2
Contraceptive 1178 295 9 3
Car Eval 1382 346 6 4

cl
as

si
fic

at
io

n

Segment 1848 462 19 7
Spambase 3681 920 57 2
Optical recog 3823 1797 64 10
Landsat 4435 2000 36 6
Pendigits 7494 3498 16 10
Lettera 16000 4000 16 26
Connect4 54046 13511 126 3
MNIST-pixelsa 60000 10000 784 10
MNIST-LeNet5b 60000 10000 800 10
SensITa 78823 19705 100 3

concrete 687 343 8 1
airfoil 1002 501 5 1
abalone 2506 1671 8 1
cpuactc 4915 3277 21 1

re
gr

es
si

on

aileronsd 7154 6596 40 1
CT slice 42800 10700 384 1
YearPredictionMSD 463715 51630 90 1

ahttps://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html
bhttps://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/datasets/
chttp://www.cs.toronto.edu/∼delve/data/comp-activ/desc.html
dhttps://www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

for reference, the important error to consider is the test error.
This is because the training error can be trivially made zero
with a tree by growing it deep enough that each leaf contains
instances of the same class, at the cost of overfitting.

The most important conclusions are as follows. First, both
for axis-aligned and oblique trees, TAO nearly always pro-
duces the most accurate trees. In the very few datasets where
TAO is not the winner, the difference is very small, and it is
due to a handful of instances, since these are small datasets
in sample size (and dimension). Note that, in such cases,
we could always further improve TAO by using the best-
performing tree as initial tree. This is unlike traditional top-
down induction algorithms such as CART or C5.0, which build
the tree from scratch. However, we did not use this advantage,
and in all our experiments we initialize TAO oblique trees
randomly.

Second, TAO’s improvement over the other methods grows
as the dataset complexity grows. Note for example the results
for “MNIST-pixels” and “MNIST-LeNet5”, having 60k train-
ing points and around 800 features.

Finally, oblique trees with TAO are far more accurate than
axis-aligned trees, particularly when the features have a higher
dimension. This, of course, is to be expected, since they
are more powerful models, but it does not generally hold

with previous algorithms such as OC1 or GUIDE (which are
also slower to train). This explains the historically lack of
widespread use of oblique trees.

For axis-aligned trees, CART (both versions) and C5.0—the
most popular algorithms—perform similarly in terms of test
accuracy, with a little favor to C5.0. GUIDE also performs
similarly. These algorithms are based on greedy recursive
partitioning and differ in minor details, such as the choice of
purity criterion. The brute-force branch-and-bound algorithms
show a disappointing performance in spite of their purported
optimality because they simply do not scale beyond tiny
problem and tree sizes. OCT and GOSDT do well only on very
small datasets like Iris or Wine, for which a very shallow tree
is sufficient. For larger datasets, deeper trees are necessary to
achieve good accuracy, but then the branch-and-bound search
has to be stopped early, typically producing a tree that is far
from optimal, often even worse than with CART or C5.0. The
GOSDT code does not actually support early stopping, so for
the vast majority of datasets it was not able to finish within our
timeout limit (set generously to 2 hours). Similar comments
apply to the oblique trees.

Decision trees are considered as interpretable models, but
this need not be true if the tree is very deep or has many
nodes. Moreover, a larger tree has larger inference time and
needs more space. Hence, it is also important to compare the
size of the trained trees. Table IV shows the average maximum
depth and average number of leaves for both axis-aligned and
oblique trees. As one would expect, larger datasets require
larger trees (in depth and number of nodes). Oblique trees
generate much more compact trees than axis-aligned trees,
but with a more complex node structure (hyperplane vs single
feature). OCT generated very small trees because [17] limited
the maximum depth due to the long computation time. GOSDT
also generated very small trees, using its default regularization
parameter (but, as noted, had a very long training time). C5.0
usually generated larger trees compared to CART. In general,
the decision trees obtained by TAO have comparable or smaller
size than those of the other methods. In some datasets (like
Letter), the number of leaves and the maximum depth are
quite large for the TAO axis-aligned tree, presumably due
to the large number of classes; a more compact tree can be
obtained by using an oblique tree. Note that in TAO the learned
tree must be a subset of the initial tree; because of the `1
regularization (with both oblique and axis-aligned trees), a
decision node may end up using no features, which leads to
pruning it. Hence the final tree structure can be quite smaller
than the initial one.

B. Regression

Table V shows the root mean squared error (RMSE) E =√
1

NK

∑N
n=1 ‖yn − ŷn‖2, where N is the sample size, K

is the output dimension, and y and ŷ are the ground truth
and predicted vectors, respectively. Note that GUIDE for
regression uses only axis-aligned splits. Again, the winner by
far are TAO oblique trees, followed at a distance by TAO axis-
aligned trees, and then the other methods. Moreover, TAO

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/datasets/
http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html


TABLE II
CLASSIFICATION DATASETS WITH AXIS-ALIGNED TREES. WE REPORT TRAIN AND TEST ACCURACY (%, AVERAGE ± STDEV OVER 10 REPEATS) AND
DATASET SPECS (NTRAIN ,D,K). WITHIN EACH ROW WE COLOR AS GREEN AND BLUE THE BEST AND SECOND BEST METHOD ON THE TEST SET. “–”

MEANS THE RESULT WAS NOT REPORTED IN THE ORIGINAL PAPER; “TIMEOUT” MEANS IT EXCEED THE TRAINING TIMEOUT.

Dataset (Ntrain, D, K) TAO CART(R) CART(Py) C5.0 GUIDE GOSDT OCT

Iris (120, 4, 3)
train 97.03±0.65 97.08±1.19 97.02±0.99 99.03± 1.25 97.00±1.35 96.75±0.87 —
test 95.41±3.81 93.33±3.15 94.75±3.20 92.64± 8.00 93.67±4.58 90.00±4.22 93.5

Wine (142, 13, 3)
train 96.01±1.49 96.97±2.63 95.86±1.22 96.68± 1.58 96.76±2.28

timeout
—

test 91.21±3.64 90.00±3.97 90.10±2.21 85.19±15.95 91.94±5.04 94.2

Dermatology (293, 34, 6)
train 98.61±0.90 97.19±1.02 98.54±0.88 97.14± 0.72 97.33±0.68

timeout
—

test 96.14±2.72 93.51±1.66 94.44±3.41 90.44± 4.78 95.54±3.08 89.2

Balance scale (500, 4, 3)
train 85.95±1.28 85.94±0.42 82.66±0.92 88.38± 1.43 86.42±2.81 72.48±2.45 —
test 82.21±3.36 78.96±0.34 79.62±2.09 78.19± 1.43 77.44±3.26 65.52±4.24 71.6

Breast Cancer (559, 9, 2)
train 95.39±2.44 96.10±0.01 95.26±1.22 97.36± 0.61 96.62±0.79 93.19±0.42 —
test 95.91±1.54 94.57±0.02 93.64±2.80 94.83± 0.90 94.57±1.75 91.17±1.28 91.5

Blood Trans (598, 4, 2)
train 79.03±1.49 76.45±0.01 79.42±2.31 79.69± 0.59 80.90±1.97 76.34±0.71 —
test 78.95±3.47 75.20±0.02 76.45±2.77 78.40± 2.45 78.80±3.26 75.67±2.82 77.0

German (800, 20, 2)
train 78.34±1.72 75.96±2.41 78.88±2.04 84.13± 2.73 69.48±1.19

timeout
—

test 73.35±4.14 72.21±3.35 72.29±3.23 69.13±10.96 69.95±2.59 69.8

Banknote auth (1098, 4, 2)
train 99.53±0.14 99.45±0.02 99.30±0.24 99.63± 0.12 99.38±0.08

timeout
—

test 98.16±1.02 97.93±0.06 96.33±2.19 98.70± 0.68 98.25±1.69 90.7

Contraceptive (1178, 9, 3)
train 54.35±1.33 57.53±1.05 53.88±1.27 76.15± 1.41 58.79±1.89

timeout
—

test 56.95±3.51 54.37±1.83 54.25±4.43 49.39± 4.79 55.19±2.13 53.3

Car Eval (1382, 6, 4)
train 99.94±0.12 98.36±1.41 99.91±0.12 92.71± 3.85 69.97±0.48 70.36±0.46 —
test 96.67±2.67 96.35±1.90 96.51±2.69 87.59± 4.19 70.23±1.93 68.67±1.84 78.8

Segment (1848, 19, 7)
train 98.39±0.54 98.87±0.69 98.34±0.58 98.42± 0.88 98.31±0.44

timeout
—

test 96.18±1.41 95.91±0.11 92.17±3.85 94.86± 1.69 95.37±1.11 —

Spambase (3681, 57, 2)
train 94.13±1.30 94.96±0.01 93.18±2.71 96.18± 0.38 95.36±0.85

timeout
—

test 93.19±1.05 91.92±0.01 89.62±3.28 92.85± 0.84 92.77±0.64 86.1

Optical recog (3823, 64,10)
train 98.48±0.06 95.33±2.18 97.85±0.12 96.76± 0.84 94.64±1.10

timeout
—

test 86.08±0.22 84.26±1.03 85.19±0.11 80.33± 5.32 84.56±1.32 54.7

Landsat (4435, 36, 6)
train 96.97±0.26 91.13±0.49 97.37±0.12 95.19± 0.71 90.05±0.86

timeout
—

test 86.10±0.25 85.94±0.27 85.21±0.23 84.12± 1.09 85.24±0.58 78.0

Pendigits (7494, 16,10)
train 98.87±0.26 99.09±0.29 98.79±0.13 98.98± 0.09 97.90±0.50

timeout
—

test 92.52±0.24 91.62±0.55 90.19±0.38 91.32± 0.71 89.93±0.77 —

Letter (16000, 16,26)
train 96.38±0.03 94.30±0.01 95.93±0.11 97.97± 0.14 93.54±0.59

timeout
—

test 86.39±0.12 86.04±0.04 86.07±0.14 85.26± 0.33 83.93±0.48 —

Connect4 (54046,126, 3)
train 86.99±1.74 82.94±1.08 83.63±0.13 82.60± 0.93 71.76±0.24

timeout
—

test 79.88±1.53 78.29±0.21 77.55±1.18 77.84± 1.41 71.66±0.32 —

MNIST-pixels (60000,784,10)
train 93.53±0.24 92.54±0.03 93.12±0.15 94.52± 0.23 75.76±0.40

timeout
—

test 88.52±0.19 88.03±0.07 88.05±0.02 88.31± 0.35 78.52±0.20 —

MNIST-LeNet5 (60000,800,10)
train 96.94±0.05 95.71±0.04 96.64±0.08 97.89± 0.14 84.15±0.28

timeout
—

test 93.52±0.03 93.31±0.05 93.32±0.07 93.48± 0.21 85.25±0.28 —

SensIT (78823,100, 3)
train 83.56±0.12 84.38±0.01 82.82±0.23 86.66± 0.11 79.05±0.23

timeout
—

test 81.84±1.11 81.71±0.01 81.00±0.19 81.41± 0.04 78.52±0.20 —

wins train 4 (of 20) 3 2 10 1 0 0
wins test 18 (of 20) 0 0 1 0 0 1

oblique trees are small (see Table VI), which makes them
easier to interpret.

C. Runtime
It is commonly accepted that tree induction algorithms are

fast, especially those which use greedy recursive partitioning,
such as CART and C5.0. We did not apply any parallel
processing in our experiments and we observe the following5:
• For small UCI datasets (Balance Scale, Breast Cancer,

etc.), all axis-aligned and oblique trees that we ran are
quite fast (around 0.5–4.0 sec.).

• For larger datasets (MNIST, SensIT, etc.), we observe
some fluctuations. In general, axis-aligned trees are still

5Some of these algorithms do benefit significantly from parallelism, in
particular TAO. For example, running TAO on a depth-8 oblique tree for 20
iterations on MNIST-pixels takes about 1 minute using our C implementation
(in the same 8-core PC on which we ran all our experiments).

fast to train: for instance, CART and C5.0 took about
200–400 sec. to train on MNIST-pixels, whereas GUIDE
and TAO axis-aligned took a little longer than that (about
1300–1500 sec.). The exception is GOSDT since, as we
described earlier, it ran out of time in most datasets. Run-
time for OCT was not provided in [17]. As for oblique
trees, we provide the following runtimes as reference:
TAO took about 1200-1400 sec., OC1 about 1800 sec.
and GUIDE took extremely long (about 26000 sec.).

V. DISCUSSION

A. TAO

Our experiments show that trees can indeed be accurate
models if one optimizes their parameters jointly rather than
greedily. What makes TAO work so well? Alternating opti-
mization (iteratively optimizing over a group of parameters



TABLE III
SIMILAR TO TABLE II BUT FOR DECISION TREES WITH OBLIQUE SPLITS.

Dataset (Ntrain, D, K) TAO OC1 GUIDE OCT CO2

Iris (120, 4, 3)
train 96.89±9.05 85.42±15.84 98.42±0.58 — —
test 94.40±5.12 85.67±14.53 94.33±3.00 95.1 —

Wine (142, 13, 3)
train 98.22±5.33 89.30±10.25 97.75±1.50 — —
test 92.00±9.38 84.45± 8.89 93.33±5.00 91.6 —

Dermatology (293, 34, 6)
train 100.00±0.00 91.58± 6.10 98.60±0.50 — —
test 97.97±1.25 84.46± 7.79 97.84±1.73 92.6 —

Balance scale (500, 4, 3)
train 99.82±0.47 93.22± 2.17 91.72±3.94 — —
test 94.72±1.89 88.96± 2.29 85.60±5.68 87.6 —

Breast Cancer (559, 9, 2)
train 98.21±0.79 82.99±12.16 96.82±0.51 — —
test 97.71±1.04 81.07±12.75 95.64±1.61 94.0 —

Blood Trans (598, 4, 2)
train 81.54±0.59 80.33± 2.69 81.02±0.63 — —
test 80.42±3.13 77.93± 3.72 79.87±3.33 77.4 —

German (800, 20, 2)
train 82.90±0.71 78.44± 5.85 70.18±1.07 — —
test 81.24±0.87 68.65± 4.17 70.15±2.17 71.0 —

Banknote auth (1098, 4, 2)
train 99.83±0.33 94.12±12.91 99.63±0.27 — —
test 99.18±0.14 91.64±13.57 98.80±0.59 98.7 —

Contraceptive (1178, 9, 3)
train 66.04±7.24 61.44± 5.71 57.58±0.93 — —
test 57.47±3.18 49.66± 3.06 56.58±2.58 53.3 —

Car Eval (1382, 6, 4)
train 99.98±0.05 97.35± 2.92 69.97±0.48 — —
test 98.03±1.02 95.49± 2.32 70.23±1.93 87.5 —

Segment (1848, 19, 7)
train 99.48±0.21 91.61± 8.84 98.41±0.41 — 97
test 96.48±1.31 88.53± 7.47 95.48±1.02 — 96

Spambase (3681, 57, 2)
train 95.55±0.47 80.72±16.51 95.74±0.99 — —
test 93.31±1.22 78.20±15.48 92.24±0.59 86.6 —

Optical recog (3823, 64,10)
train 97.68±0.59 72.50±19.62 94.54±1.36 — —
test 91.27±1.74 62.00±17.60 79.19±1.20 54.3 —

Landsat (4435, 36, 6)
train 94.45±0.49 80.25± 2.20 91.54±1.29 — —
test 87.81±0.88 73.54± 2.00 85.97±0.80 78.2 —

Pendigits (7494, 16,10)
train 99.81±0.13 91.72± 7.81 98.85±0.14 — 96
test 96.80±0.70 84.42± 7.02 91.80±0.69 — 92

Letter (16000, 16,26)
train 95.43±0.29 75.85± 3.80 90.80±1.05 — 94
test 90.41±0.31 65.81± 4.83 82.65±0.90 — 87

Connect4 (54046,126, 3)
train 82.40±0.53 79.02± 1.45 72.11±0.31 — 81
test 81.09±0.39 75.42± 0.64 72.01±0.36 — 78

MNIST-pixels (60000,784,10)
train 98.43±0.07 78.62± 9.62 73.02±0.79 — 94
test 94.74±0.11 74.34± 9.94 73.79±0.91 — 90

MNIST-LeNet5 (60000,800,10)
train 99.98±0.01 89.52±14.76 84.15±0.28 — —
test 98.22±0.18 87.97±14.24 85.25±0.28 — —

SensIT (78823,100, 3)
train 85.97±0.13 76.10±12.69 79.64±0.28 — 83
test 85.44±0.27 73.70±11.31 79.25±0.33 — 82

wins train 18 (of 20) 0 2 0 0
wins test 18 (of 20) 0 1 1 0

given the rest are fixed) is a simple but solid algorithm which
works very well if groups of parameters exhibit significant
separability with respect to each other; this is proven by TAO’s
separability condition [13], [14]. Optimizing over one node is
not trivial but can be shown to be equivalent to a certain binary
classification problem (reduced problem theorem [13], [14]),
for which efficient approximate algorithms exist.

It is instructive to compare tree learning with (say) neural
net learning. The latter can be optimized via gradient-based
algorithms which guarantee a monotonic decrease of the
objective function (and indeed are responsible for the success
of deep learning). Alternating optimization works badly with
neural nets because their weights do not exhibit separability
(although such separability can be artificially introduced [24],
[25]). With decision trees we have the opposite situation: we
cannot use gradients, but alternating optimization applies and
is effective. CART-type algorithms grow the tree structure
(greedily fixing node parameters). This can also be applied

to neural nets, but it is far more effective to fix the structure
and optimize the weights—just as TAO does.

In TAO the exploration over tree structures happens implic-
itly: weights become 0 because of the `1 penalty, and when
all the weights in a node become 0 that node is effectively
redundant and can be pruned at the end.

The better optimization also makes oblique trees much
better than axis-aligned trees, which was to be expected
(particularly with correlated high-dimensional features) but
did not occur with CART-type algorithms. This is because
optimizing a purity criterion at a node can be done exactly
with univariate nodes (by enumeration over all features and
thresholds) but is a difficult problem with multivariate nodes.

B. Approximate brute force search via branch & bound

The OCT [17] and GOSDT [18] papers claim their algo-
rithms are optimal (indeed, “optimal” is part of each algo-
rithm’s name) and have provable guarantees of optimality. This



TABLE IV
CLASSIFICATION DATASETS: AVERAGE MAXIMUM DEPTH (∆) AND AVERAGE NUMBER OF LEAVES (L) OVER 10 REPEATS FOR BOTH AXIS-ALIGNED AND

OBLIQUE TREES, REPORTED AS ∆ \L. “–” MEANS NOT REPORTED IN THE ORIGINAL PAPER OR EXCEEDED TRAINING TIMEOUT.

axis-aligned oblique
Dataset

TAO CART(Py) CART(R) C5.0 GUIDE GOSDT OCT TAO OC1 GUIDE OCT CO2

Iris 3\4.4 3\4.4 2.5\3.6 1.5\3.5 2.3\3.3 2\3 4\– 3\8.1 1.6\2.6 2.3\3.3 4\– –\–
Wine 2.8\5.6 2.8\5.8 3\5.5 1.2\3.5 2.7\4.6 –\– 4\– 5\16 2\3.2 2.4\3.5 4\– –\–
Dermatology 7\9.6 7\9.6 6.1\7.2 4.7\6.7 6.7\8.6 –\– 4\– 5\13.5 3\5 5.1\6.2 4\– –\–
Balance scale 7.2\24.6 7.2\24.6 6.7\22.6 7.1\27.8 6.3\18.1 2.4\3.4 4\– 4\9.9 2.9\4.3 5.8\8.3 4\– –\–
Breast Cancer 3.4\5.4 3.4\5.6 3.2\5.5 4\9 4\7.6 1\2 4\– 3\7.8 2.5\4 1.8\3.2 4\– –\–
Blood Trans 7.4\14 7.4\20.8 0\1 2.5\4.6 4.8\8.2 0\1 4\– 6.3\19.1 3.9\5.7 2.4\3.5 4\– –\–
German 5\6.6 5\7.6 4.9\6.6 5.2\19.10 4.5\5.9 –\– 4\– 3\3.4 2.4\4.9 3.5\6.4 4\– –\–
Banknote auth 6\17.8 6\20.2 5.8\14 5.8\14.3 6.7\19 –\– 4\– 3\7.4 4.2\9.3 5.1\8.3 4\– –\–
Contraceptive 4.6\6.6 4.6\7.4 4.3\7.6 11.1\89.6 5.6\12.7 –\– 4\– 5\24.4 5.1\9.3 4\7.3 4\– –\–
Car Eval 12.7\68 12.2\68 11.8\56.7 3.6\41.2 4.6\6.7 0\1 4\– 7\38.3 3.5\5.6 3.6\5 4\– –\–
Segment 14\38.2 14\39.2 13.8\41.3 7.3\21 13.2\39.7 –\– –\– 8\135 5.3\11 15.2\31.2 –\– 8\–
Spambase 14.2\50.2 14.4\55 10.7\41.7 14.7\68.6 12.3\53.5 –\– 4\– 4\14.8 3.56\5.1 15.4\48 4\– –\–
Optical recog 12\193.8 12\198.2 11.7\107.2 10.8\72.6 13.4\126.6 –\– 4\– 7\57.4 4.2\9.6 13.7\138.7 4\– –\–
Landsat 12\231.4 12\236.4 11.8\57.6 11.1\67.1 9.9\50.8 –\– 4\– 7\70.6 6.3\13.4 17\50.5 4\– –\–
Pendigits 15.2\177.2 15.2\183.6 13.8\153.6 13.6\129 14\161.5 –\– –\– 8\146 5.9\19.4 20.1\135.5 –\– 12\–
Letter 27\1550 27\1579 26\920 17\1343 23.4\994.8 –\– –\– 11\1077 10.2\88.7 28\673.1 –\– 12\–
Connect4 33.2\5336 33.2\5744 27.7\1213 16.8\813 16.7\38.4 –\– –\– 8\210 8.6\32.8 17.9\26.5 –\– 16\–
MNIST-pixels 19\899.5 19\899.5 18.3\805.4 19\941.6 8.5\58.8 –\– –\– 8\177.8 5\12.8 14.9\38.5 –\– 14\–
MNIST-LeNet5 17\484 17\484 18.6\363.2 15.2\582 9.3\42.4 –\– –\– 8\166.8 4.4\11.8 9.3\42.4 –\– –\–
SensIT 12\152 12\152 14\239.5 15.2\410 9.8\41.6 –\– –\– 7\69.2 8.1\21.8 10.8\24.3 –\– 6\–

TABLE V
REGRESSION DATASETS (AXIS-ALIGNED AND OBLIQUE TREES). WE REPORT TRAIN AND TEST ROOT MEAN SQUARED ERROR (RMSE), AS IN TABLE II.

oblique axis-aligned
Dataset (Ntrain, D,K)

TAO TAO CART(R) CART(Py) GUIDE

concrete (687, 8,1)
train 3.41±0.23 3.06±5.36 3.93±2.67 3.07±2.31 5.46± 0.37
test 7.17±0.43 7.20±3.17 7.23±3.08 7.22±3.13 7.50± 0.27

airfoil (1002, 5,1)
train 3.01±0.29 0.47±0.10 0.72±0.12 0.52±0.10 2.44± 0.10
test 3.13±0.38 2.73±0.62 2.77±0.86 2.75±0.62 3.20± 0.19

abalone (2506, 8,1)
train 2.11±0.02 2.29±0.12 2.31±0.25 2.32±0.11 2.21± 0.05
test 2.18±0.05 2.32±0.58 2.38±0.31 2.34±0.59 2.30± 0.09

cpuact (4915, 21,1)
train 2.47±0.07 2.68±0.69 2.91±0.71 2.71±0.65 10.00± 0.88
test 2.71±0.04 3.26±0.51 3.36±1.32 3.28±0.44 10.99± 1.54

ailerons (E × 10−4) (7154, 40,1)
train 1.65±0.02 2.39±0.00 1.81±0.12 2.83±0.23 1.86± 0.02
test 1.76±0.02 2.55±0.00 2.21±0.63 2.85±0.57 2.06± 0.02

CT slice (42800,384,1)
train 1.42±0.04 1.01±0.04 1.12±0.15 1.06±0.06 8.12± 0.17
test 1.54±0.05 2.66±0.04 2.91±0.95 2.69±0.03 8.23± 0.20

YearPredictionMSD (463715, 90,1)
train 8.91±0.03 9.71±0.31 9.73±0.20 9.71±0.24 9.78± 0.01
test 9.11±0.05 9.76±0.11 9.81±0.31 9.79±0.54 9.83± 0.01

wins train 4 (of 7) 3 0 0 0
wins test 6 (of 7) 1 0 0 0

TABLE VI
REGRESSION DATASETS: AVERAGE MAXIMUM DEPTH (∆) AND AVERAGE NUMBER OF LEAVES (L) OVER 10 REPEATS.

oblique axis-aligned

Dataset TAO TAO CART(R) CART(Py) GUIDE
∆ L ∆ L ∆ L ∆ L ∆ L

concrete 9.0 192.0 11.2 113.0 11.8 104.4 11.2 113.0 9.0 59.9
airfoil 8.0 147.1 15.0 479.8 15.6 457.2 15.0 479.8 10.6 95.3
abalone 6.0 58.6 5.0 12.8 4.8 11.0 5.0 12.8 6.0 18.1
cpuact 6.0 52.7 9.0 57.2 8.7 52.8 9.0 57.2 8.4 21.8
ailerons 6.0 60.2 7.0 15.0 7.8 66.6 7.0 15.0 8.5 66.1
CT slice 7.0 74.8 36.0 700.0 30.0 691.6 36.0 700.0 12.7 83.2
YearPredictionMSD 8.0 157.9 12.0 135.0 11.8 121.0 12.0 135.0 10.3 111.9



misrepresents the reality and is in stark contrast with their
practical performance. The catch is that brute-force search,
while obviously optimal in theory, can perform terribly under
realistic computation time limits. Alternating optimization and
gradient methods actively and efficiently improve the current
iterate until convergence to a (local) optimum. Branch &
bound (B&B) works in a far less aggressive way, exploring
an exponential number of subproblems (most of which are
useless) and hence having an exponential worst-case com-
plexity (which is not significantly improved by using running
bounds to prune problems). Exact B&B is impractical unless
one limits the tree to tiny sizes because the number of tree
structures is huge (it grows much faster than 2n where n is
the number of nodes [14]), and besides one has to optimize
over the nodes’ parameters as well. Stopping B&B early may
unfortunately provide meaningless estimates, because high-
quality solutions may not appear until deep into the exploration
and may never be reached in a practical runtime. Also, B&B
cannot recognize that a tree is optimal until the entire search
is finished, while alternating optimization will terminate at an
optimal tree instantly (since it cannot be improved).

It is true that mixed-integer optimization commercial solvers
have drastically improved in the last decades, as emphasized
(somewhat hyperbolically) by [17], but the empirical results
show that approximate brute-force search is still limited to
unacceptably small trees in practice (depth up to around 4
and small datasets in dimensionality and sample size). Few
real-world problems can be modeled with so small models.
Indeed, with TAO we observe that the accuracy improves
significantly with the depth until it stagnates. Although this
depth depends on the difficulty of the problem, it is rarely
smaller than 4, even for oblique trees, and usually quite bigger.
Importantly, note that the number of leaves and decision nodes
grows exponentially with the depth; each additional layer
doubles that number. Thus, increasing the depth a bit causes
enormous extra computation for B&B methods. Hence, sig-
nificant algorithmic improvements will be necessary for brute
force search via branch & bound to become ever competitive
with methods such as TAO that monotonically decrease the
objective function at each iteration.

VI. CONCLUSION

For a long time, decision trees have been unfairly considered
as second-class models in terms of accuracy, which has limited
their practical application. Rather than a lack of modeling
power, the problem has been a lack of an effective algorithm
to learn trees from data—until now. Non-greedy optimization
jointly over all the nodes’ parameters makes it possible to
train highly accurate trees that can also remain interpretable, in
particular with the TAO algorithm, as shown here. This should
make oblique trees much more useful in practice. Beyond this,
TAO has also shown marked improvements on forests [26]–
[28] and can also train more complex tree-based models [29].
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