
Beyond the ROC Curve: Classification Trees Using Cost-Optimal Curves,
with Application to Imbalanced Datasets

Magzhan Gabidolla 1 Arman Zharmagambetov 2 Miguel Á. Carreira-Perpiñán 1

Abstract

Important applications such as fraud or spam de-
tection or churn prediction involve binary classi-
fication problems where the datasets are imbal-
anced and the cost of false positives greatly dif-
fers from the cost of false negatives. We focus
on classification trees, in particular oblique trees,
which subsume both the traditional axis-aligned
trees and logistic regression, but are more accu-
rate than both while providing interpretable mod-
els. Rather than using ROC curves, we advo-
cate a loss based on minimizing the false neg-
atives subject to a maximum false positive rate,
which we prove to be equivalent to minimizing a
weighted 0/1 loss. This yields a curve of clas-
sifiers that provably dominates the ROC curve,
but is hard to optimize due to the 0/1 loss. We
give the first algorithm that can iteratively update
the tree parameters globally so that the weighted
0/1 loss decreases monotonically. Experiments
on various datasets with class imbalance or class
costs show this indeed dominates ROC-based
classifiers and significantly improves over previ-
ous approaches to learn trees based on weighted
purity criteria or over- or undersampling.

1. Introduction

Many important practical applications involve a binary clas-
sification problem with imbalanced classes (e.g. few posi-
tives and many negatives) or asymmetric costs (e.g. a false
positive is much more costly than a false negative), where
the positives and negatives are suitably defined in each case.
Examples are fraud or spam detection or churn prediction.
Although many types of classifiers may be used, we fo-
cus on classification trees, which are widely recognized as

1Dept. CSE, University of California, Merced, USA 2Meta
AI (FAIR). Correspondence to: Miguel Á. Carreira-Perpiñán
<mcarreira-perpinan@ucmerced.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

among the most interpretable models. We consider the tra-
ditional axis-aligned trees (where each decision node uses
a single feature) and also sparse oblique trees (where each
decision node uses a linear combination of a small subset of
features). The latter are far more powerful and subsume as
particular cases axis-aligned trees (such as CART or C5.0)
and linear classifiers (such as logistic regression or linear
SVMs). In both cases each leaf node outputs a constant
label.

In these types of problems, optimizing the raw accuracy
does not work well because it can largely ignore the low-
cost or infrequent class. It is desirable to have control on
the number of false positives or true positives. A popular
way to achieve this is through the ROC curve, but this re-
sults in suboptimal classifiers because it does not explicitly
optimize for accuracy or true positives while controlling the
false positive rate.

Our paper has two contributions. Firstly, in section 3, we
formally propose the concept of cost-optimal curve (COC).
This defines a set of optimal-accuracy classifiers as a func-
tion of the false positive level. We prove this is equiva-
lent to a penalized formulation which has the form of a
weighted 0/1 loss and (with our new algorithm) is more
amenable to optimization, although still NP-hard in general.
Although the COC idea is straightforward, its properties
and optimization appear not to have been explored before.
Note this is different from using a weighted surrogate loss
such as the cross-entropy; while this (being differentiable)
can be easily optimized, its optimum can be quite far from
the true (0/1 loss) one. Second, in section 4, we propose the
first algorithm that directly tries to optimize this problem
for classification trees, with the guarantee that the weighted
0/1 loss decreases monotonically at each iteration. In sec-
tion 5, our experiments confirm that the algorithm provides
a good approximation to the ideal COC curve and is gener-
ally much better than using the ROC curve or approaches
based on over- or undersampling, cost-sensitive surrogates
or weighted purity criteria for constructing the tree.

1

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

2. Related Work

Imbalanced learning has been studied extensively
(Branco et al., 2016; Fernández et al., 2018; He & Ma,
2013; Japkowicz & Shah, 2011; Sun et al., 2009). As the
distribution of classes is significantly skewed, it is challeng-
ing for standard classifiers to learn and predict the minority
class accurately. Several techniques have been proposed to
address this. One commonly used approach is resampling
(Sun et al., 2009; Fernández et al., 2018), which aims to
rebalance the class distribution by either oversampling the
minority class or undersampling the majority class. More
advanced sampling techniques exist, such as SMOTE
(Chawla et al., 2002) and ADASYN (He et al., 2008),
that are capable of generating new synthetic samples to
increase the representation of the minority class. Apart
from sampling, evaluation metrics play a crucial role in
assessing the performance of imbalanced learning algo-
rithms. Accuracy alone may not be an appropriate metric,
as it can be misleading due to the class imbalance. Instead,
metrics like precision, recall, F1–score, and AUC–ROC are
commonly used to evaluate the performance of classifiers
in imbalanced learning scenarios (Japkowicz & Shah,
2011). Another set of techniques focuses on modifying
the classification algorithms to handle imbalanced datasets
more effectively. Cost-sensitive learning assigns different
misclassification costs to different classes, encouraging
the classifier to prioritize correct classification of the
minority class (Branco et al., 2016; Fernández et al., 2018;
He & Ma, 2013). However, this does not use the 0/1 loss
as in eq. (2), but a surrogate loss (e.g. the cross-entropy),
which means one does not optimize the true positives given
a false positive rate.

In the context of decision trees, resampling techniques are
still applicable, as they are model agnostic. Another stan-
dard approach is to obtain an ROC curve and perform
model selection (Cook & Goldman, 1984). Some methods
propose to minimize directly a desired objective such as
AUC–ROC, F1–score, etc. However, this is challenging
since the optimization problem with such metrics is diffi-
cult even with linear models. Therefore, previous works
either rely on greedy recursive partitioning (Ferri et al.,
2002; Gajowniczek & Ząbkowski, 2021) (similar to CART
(Breiman et al., 1984)) or are not scalable, as they solve
the problem by brute-force search with branch-and-bound
(Lin et al., 2020). Cost-sensitive learning for decision trees
has also been studied in various settings (Elkan, 2001;
Höppner et al., 2022) but limited to traditional axis-aligned
trees trained via greedy recursive partitioning. The works
most closely related to our cost-optimal curve (COC) are
Drummond & Holte (2000); Raubertas et al. (1994), who
propose to construct a true-positive versus false-positive
curve by learning a new decision tree for each class-specific
cost matrix. This is a form of cost-sensitive learning but, in-

stead of using a surrogate (not 0/1) loss, each tree itself is
grown using a CART-style greedy procedure. This uses a
local purity criterion (the Gini index) to split nodes but does
not optimize any global loss function over the tree param-
eters and is highly suboptimal (Hastie et al., 2009). Thus,
unlike us, each tree’s problem is not defined by optimizing
the true positives given a false positive rate, or a weighted
0/1 loss of both.

3. The ROC Curve and the Cost-Optimal
Curve (COC)

3.1. The ROC Curve

Throughout the paper, we will write TP and FP to mean true
and false positive rate, respectively, and likewise TN and
FN for true and false negative rate; and define the ROC (and
COC) space as points (FP,TP). Assume we have trained a
base classifier which outputs the probability that an input
instance x is in the positive class, p(y = +1|x) ∈ [0, 1].
(For classification trees with constant-label leaves this is
usually achieved by labeling each leaf with the proportion
of instances that are positive from among the instances that
reach the leaf.) Typically, but not necessarily, this classifier
was trained to optimize the accuracy on the training set. As
is well known, the ROC curve is obtained by postprocess-
ing this classifier through a threshold t ∈ [0, 1] (considered
as a free parameter) so that we predict the positive class if
p(y = +1|x) > t. Over a training set with N points this
defines a set of at most N + 1 classifiers, each correspond-
ing to an ROC point (FP,TP). This includes two constant
classifiers: one (for t = 0) predicts always the positive
class regardless of x and is at ROC point (1,1); the other
(for t = 1) predicts always the negative class and is at (0,0).
These two classifiers and likely others for t near 0 or 1 are
obviously useless, as they ignore one class. This happens
even if the base classifier achieves a perfect accuracy of 1;
the ROC curve deteriorates it as we vary t away from 1

2 .

The ROC curve is a fast, simple way to achieve a classi-
fier with lower overall accuracy but a more desirable FP
rate, particularly in cases with imbalanced classes or asym-
metric class costs. However, it is clear that (except possi-
bly for the base classifier) this does not produce a classifier

that, having the desired FP rate, is optimal within its model

class. To obtain this we need to solve a different optimiza-
tion problem as a function of the FP rate, as we describe
next. This will then produce a different curve that we call
cost-optimal curve (COC).

3.2. The Cost-Optimal Curve (COC)

Assume a training set {(xn, yn)}
N
n=1 where xn ∈ X

and yn ∈ {−1,+1} for n = 1, . . . , N , and a classifier
T (·; θ): X → {−1,+1} with parameters θ. We define as

2

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

θ1

θ
2

π(θ) ≤ p

ν(θ)
θ
∗(p)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

θ1

θ
2

θ
∗

π

θ
∗

ν

θ
∗(λ)

FP rate (= π)

T
P

ra
te

(=
1
−

ν
)

0

1

1

FP = 0

TP = 1

COC
ROC

optimal 0/1
accuracy (λ = 1)

Figure 1. Illustration of the COC curve for a classifier with parameters θ ∈ R
2, FP rate π(·) and FN rate ν(·). Left: θ∗(p) is an optimal

classifier (minimizing ν) with an FP rate of at most p. The infeasible set is in pink. Middle: the optimal classifier path θ
∗(λ) over the

cost λ, i.e., minimizing ν + λπ, from θ
∗

ν = θ
∗(0) to θ

∗

π = θ
∗(∞). The contours of ν and π are in color and black, respectively. Note

that, for ease of visualization, we plot the contours and path as continuous; in reality, π and ν are discrete (0/1 loss). Right: the COC
curve corresponding to the optimal classifier path and the ROC curve (assuming as base classifier that for λ = 1).

our desired classifier one that minimizes the FN rate1 given
that the FP rate is at most p ∈ [0, N]:

min
θ

ν(θ) s.t. π(θ) ≤ p with (1)

ν(θ) =

N∑

n: yn = +1

L(yn, T (xn; θ)), π(θ) =

N∑

n: yn = −1

L(yn, T (xn; θ))

where L(y, y′) = 0 if y = y′ and 1 if y 6= y′ is the 0/1 loss,
and ν and π are the FN and FP rate, respectively. Note
ν(θ) + π(θ) =

∑N

n=1L(yn, T (xn; θ)) is the 0/1 loss on
the whole training set. Also, usually the problem includes
a regularization term on θ, but we ignore this to keep the
notation simple.

This is a constrained optimization problem whose feasible
set are those classifiers having a FP rate of at most p (fig. 1
(left)). By solving (1) for all p ∈ [0, N] we obtain a finite
collection of at most N + 1 classifiers, each for a different
FP and FN (hence TP) rate, which defines the COC curve.
The following properties arise immediately:

• The COC curve dominates the ROC curve (or indeed any
other curve using the same classifier family). That is, for
any point (FP,TP) on the ROC curve there exists another
point (FP’,TP’) on the COC curve with FP’≤ FP and TP’
≥ TP. This follows directly from (1). See fig. 1 (right).

• The extreme points of the COC curve are at (α, 1) and
(0, β) where α < 1 and β > 0, unlike for the ROC curve
(where α = 1 and β = 0). This follows by noting that we
can always classify one class perfectly while also classi-
fying some of the other class’ points correctly, if we op-
timize as in (1). Thus, we expect the advantage of the
COC curve to be larger in regions of high TP or low FP
(which are often the most important regimes in practice).

1Although we use the term “rate”, in the equations, to keep
them simpler, we use the absolute count. The normalizing fac-
tors (number of positives and negatives in the training set) can be
absorbed into p in eq. (1) or λ in eq. (2).

Another advantage of the COC curve over the ROC one is
that it does not require the classifier to output probabilities;
all the classifier needs to do is predict a class.

3.3. Cost-Sensitive (Weighted) 0/1 Loss

Consider now the following unconstrained optimization
problem2 where λ ≥ 0:

minθ ν(θ) + λπ(θ). (2)

This objective function is a weighted 0/1 loss: it gives a
misclassification cost of 1 to a FN and of λ to a FP. The
usual misclassification error (unweighted 0/1 loss) results
for λ = 1. In the Appendix, we prove that problems (1)
and (2) have the same set of solutions, i.e., solving (1) for
all p ∈ [0, N] produces the same set of classifiers as solv-
ing (2) for all λ ≥ 0 and hence the same COC curve. How-
ever, computationally it is easier to solve (2) than (1) in our
case (see section 4). Note that, if the base classifier used
to construct the ROC curve was trained to minimize the 0/1
loss (i.e., eq. (2) with λ = 1), then the ROC curve would
touch the COC curve for λ = 1, but the COC curve would
otherwise dominate. See fig. 1 (middle and right).

It is important to differentiate this from traditional
work on cost-sensitive learning (e.g. Höppner et al., 2022;
Vanderschueren et al., 2022 using logistic regression). The
latter also uses a loss function where one class has a dif-
ferent weight, as in (2). But the loss function is the cross-

entropy or other surrogate loss, not the 0/1 loss (and what
the ROC space reports are 0/1 loss TP and FP), hence the
result does not yield a COC curve.

Computationally, the ROC approach is fast because it trains
a single classifier, while the COC one trains one classifier

2We could also define (1) as minθ ν(θ) + π(θ) s.t. π(θ) ≤ p,
i.e., maximize the accuracy rather than the TP rate. But turning
this into a penalized problem minθ ν(θ) + π(θ) + λπ(θ) shows
it to be equivalent to (2) but using a penalty parameter 1 + λ.

3

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

per value of λ. However, the training time can be signifi-
cantly reduced by using warm-start, i.e., solving (2) for a
sequence of λ values and initializing each from the previ-
ous one’s solution.

Just as with the ROC curve, we can define the area under
the curve (AUC) as a summary statistic for the COC curve.
But note that both the ROC and COC curves are really finite
sets of (at most N + 1) points, Thus, their “area” is not
well defined, particularly if they consist of few points, as
happens with trees. Indeed, for a classification tree with L
leaves, the ROC curve cannot have more than L+1 points.
The COC curve for trees does not have such a limit because
each COC point corresponds to a different tree.

Ideal vs Approximate COC Curve In practice, optimiz-
ing (1) or (2) exactly is generally impractical because the
0/1 loss typically defines NP-hard problems. This is true for
trees and linear classifiers, for example. One can still use
an approximate optimization such as a surrogate loss (e.g.
the cross-entropy or hinge loss for linear classifiers), or—
better—our algorithm in section 4. This will result in an
approximate COC curve, which will be dominated by the
ideal COC. Likewise, the base ROC classifier will be ap-
proximate. The approximate COC curve should dominate
the ROC curve because the former still tries to minimize
the FN for any FP rate.

The COC Curve on a Test Set Throughout the previous
discussion we have assumed a training set on which prob-
lems (1) and (2) are defined. Will the COC curve dominate
the ROC curve on a test set and hence lead to better gener-
alization? Under the usual assumption in machine learning
that the training and test sets come from the same distri-
bution, one would expect so, and this is confirmed in our
experiments.

4. Optimizing a Cost-Sensitive 0/1 Loss over a
Classification Tree

To realize the advantages of the COC curve one needs to

optimize (2), which uses a weighted 0/1 loss, as best as pos-

sible. Traditionally, as in CART and C5.0, decision trees
have been trained in a heuristic way by greedy recursive
partitioning. This sets a decision node’s split by optimiz-
ing a local “purity” criterion (such as the Gini index or
information gain), but the overall procedure does not op-
timize any loss over the entire tree. Likewise, while the
local criterion can include class weights, this does not opti-
mize an overall class-weighted loss (0/1 or otherwise). Re-
cently, an algorithm has been proposed (Tree Alternating

Optimization (TAO)) (Carreira-Perpiñán & Tavallali, 2018)
which does optimize a global loss over a parametric tree
(axis-aligned or oblique). Here, we extend TAO to handle

a weighted 0/1 loss objective such as that in (2).

The core idea of TAO is to take a parametric tree of fixed
structure and perform optimization steps in turn over the
parameters of a single node while keeping the rest of the
parameters fixed. This succeeds because of the three the-
orems that we describe below. It works quite similar to
how one would optimize a neural network, but instead of
gradients (which do not apply) TAO uses alternating opti-
mization on a fixed tree structure. This results in iteratively
updating all the parameters in the tree (decision node hyper-
planes and leaf class labels), with a monotonic decrease of
the objective function at each iteration over all nodes and
convergence to a local optimum.

More formally let T (·;Θ): X → {−1,+1} be a decision
tree of a given, predetermined structure of depth ∆ with
learnable parameters Θ = {θi}i∈D ∪ {θi ∈ {−1, 1}}i∈L,
where D are the set of decision nodes and L are the set
of leaf nodes. The predictive function of a tree T (x; θ)
works by routing x from the root to exactly one leaf and
outputting the leaf’s class label. The routing function at
a decision node i works by applying the decision function
gi(x; θi): X → {lefti, righti} ⊂ D ∪ L, which for
oblique splits θi = {wi, wi0} mean “go to the left child if
wT

i x + wi0 < 0, else go to the right child”. Axis-aligned
trees are a special case of oblique trees, for which wi is all
zeros but one at the selected feature index and−wi0 serves
as a threshold value. The objective function for TAO in the
context of cost-sensitive learning is to minimize a weighted
0/1 loss:

E(Θ) =
N∑

n: yn=+1

L(yn, T (xn;Θ))

+ λ

N∑

n: yn=−1

L(yn, T (xn;Θ)) + α
∑

i∈D

φi(θi). (3)

We add a regularization term φ(·) to decision node weights,
specifically ℓ1 norm to promote sparse oblique splits. The
hyperparameter α ≥ 0 then controls the strength of the
regularization.

We now show how we extend the TAO algorithm to handle
this cost-sensitive 0/1 loss problem. The algorithm is based
on 3 theorems. The first theorem of the original TAO states
the separability condition: the objective function (3) sepa-
rates over any set of non-descendant nodes (e.g. all nodes at
the same depth), and thus those can be optimized indepen-
dently and in parallel. This follows from the fact the tree
makes hard decisions and that the loss is separable over in-
dividual points. Our cost-sensitive problem is no different
in this respect, and we directly use this theorem without any
modification.

For presenting the next 2 theorems the following defini-

4

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

tions are helpful: Reduced set Ri ⊂ {1, . . . , N} of node
i (decision node or leaf) is the training instances that reach
node i given the current tree parameters. Care points

Ci ⊂ Ri of a decision node i are the training instances in
the reduced set xn ∈ Ri for which Tlefti(xn;Θlefti) 6=
Tright

i
(xn;Θright

i
) where Tc(·;Θc) is the predictive func-

tion for the subtree rooted at node c given the current tree
parameters. In other words, care points for a given decision
node consists of training instances in its reduced set for
which one of its children misclassifies the instance while
the other child classifies it correctly.

Theorem 4.1 (Reduced problem over a decision node).
Consider the objective function E(Θ) of eq. (3) and a de-

cision node i. Assume the parameter values Θ \ {θi} of

all the nodes except i are fixed. Then, as a function of θi,

eq. (3) can be reduced to the following cost-sensitive binary

classification problem:

Ei(θi) =
∑

n∈Ci: yn=+1

L(yin, gi(xn; θi))

+ λ
∑

n∈Ci: yn=−1

L(yin, gi(xn; θi)) + αφi(θi) (4)

where yin = argminc∈{lefti,righti}
L(yn, Tc(xn;Θc)) is

the child of i which gives the correct prediction for the in-

stance n.

This follows from the fact that all a decision node can do
with an instance is to send it down its left or right child, and
the ideal choice is the one that gives the correct prediction.
It is interesting to observe that although this problem looks
similar in notation to the high level objective function (3), it
is not a class-based cost sensitive, but more of an instance-
based cost sensitive. This is because both a negative and
a positive label point might select the same child as “best”
which already gives two different costs for one class, thus
making the problem not a class-based cost sensitive.

For oblique nodes this problem is NP-hard but can be
well approximated with a convex surrogate; we use ℓ1-
regularized logistic regression where each instance incurs
some cost and we solve it using LIBLINEAR (Fan et al.,
2008). We can guarantee a monotonic decrease in the ob-
jective by only accepting this update if it improves over the
previous step.

Theorem 4.2 (Reduced problem over a leaf). Consider the

objective function E(Θ) of eq. (3) and a leaf node i. As-

sume the parameter values Θ\ {θi} of all the nodes except

i are fixed. Then, as a function of θi, eq. (3) can be reduced

to the following simple problem:

Ei(θi) =
∑

n∈Ri: yn=+1

L(yn, θi)+λ
∑

n∈Ri: yn=−1

L(yn, θi)

(5)

where Ri is the reduced set of the leaf i. The optimal solu-

tion θ∗i = 1 if |R+
i | ≥ λ |R−

i | else -1, where |R+
i | (|R−

i |)
is the number of points in the positive (negative) class in

the reduced setRi of the leaf i.

Since our leaves are just constant label predictors, the solu-
tion to this problem is simply a weighted majority vote, i.e.
a class label with largest cost in the reduced set. We pro-
vide the proofs of these theorems in Appendix C along with
the pseudocode of the overall TAO algorithm with COC in
figs. 6 and 7 of Appendix.

To obtain COC curves we train several decision trees with
TAO for differing cost of false positives λ. To obtain a more
stable and smoother path of trees we follow this procedure:
first we train a base model by setting λ such that the total
cost of FPs and FNs are equal. Then from this base model
we follow two COC paths: one by increasing the λ and
the other by decreasing it using the following schedules:
λ← λβ and λ← λ/β, respectively, where β > 1 controls
how fast we move. In each step of the path we warm-start
from the previous tree which accelerates the training and
helps to produce smoother COC curves. The increasing
λ path stops when the FP-rate = 0, and similarly for the
decreasing λ path when the FN-rate = 0.

Computational complexity. This is dominated by the de-
cision node optimization, which we solve using logistic re-
gression. Assuming this is linear on the sample size, train-
ing all the decision nodes at the same depth is approxi-
mately constant and equal to training one logistic regres-
sion on the whole training set. Thus, the total sequential
cost of one iteration is roughly equal to that of ∆ logistic
regressions on the whole dataset. As noted before, all the
nodes at the same depth can be trained in parallel.

5. Experiments

5.1. Illustration of the Optimality of COC

We first illustrate the optimality of exact COC curves over
its approximations and over traditional ROC curves. Be-
cause obtaining these exact optimal curves amounts to solv-
ing a weighed 0/1 loss problem and since this is gener-
ally NP-hard for all nontrivial ML models, for demonstra-
tion purposes we choose two simple cases: an oblique tree
of depth 1 on a toy problem and an axis-aligned decision
stump on a real dataset.

For binary classification problems, a depth 1 oblique tree
can be equivalently considered as a linear classifier. Opti-
mizing a 0/1 loss with a linear model is still an NP-hard
problem, but for very simple toy datasets we can formu-
late it as a mixed integer programming and rely on ex-
isting MIO solvers. We create a non-linearly separable
toy 2D balanced binary classification dataset of 100 points

5

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

Oblique tree, depth ∆ = 1 Axis-aligned tree, depth ∆ = 1 Oblique tree, depth ∆ = 3
Toy dataset Email spam dataset MNIST synthetic labels

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
P

-r
at

e

FP-rate

COC

ROC
Surrogate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP-rate

COC

ROC
Surrogate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP-rate

COC
ROC

Figure 2. Illustration of the optimality of COC. Each point represents one model, and they are connected for better visualization.

sampled from two Gaussian distributions, and use an MIO
solver to obtain a range of linear models by varying the
cost of FPs λ. In the left part of fig. 2 we plot their
(FP,TP) rate result which by definition generates the COC
curve. We also plot the models resulting from optimizing a
weighed cross-entropy loss, i.e. logistic regression, which
is a widely used surrogate. We can clearly see how this
surrogate is consistently inferior to the optimal one for all
ranges of FP-rate. In the figure we can also observe how
the traditional ROC curve obtained by varying the thresh-
old in logistic regression is also below the COC, but ap-
proximately matches the weighted cross-entropy. This em-
phasizes how optimizing a weighted 0/1 loss is important
to obtain models with better TP/FP rate than the convex sur-
rogates. Note also how the optimal COC curve reaches the
TP-rate of 1 or FP-rate of 0 faster than the ROC curve, i.e. it
touches the left and top axes well before the corner points.

A decision stump, i.e. an axis-aligned tree of depth 1 is per-
haps one of the simplest models in ML, yet for many sim-
ple datasets it achieves decent performance (Holte, 1993).
Here we use them to illustrate the importance of COC
curves, because unlike other models in ML, for this sim-
ple case an exact solution can be found by simple enu-
meration. For a relatively imbalanced email spam dataset
of about 5000 points we train a series of decision stumps
for differing cost of FPs λ and plot the corresponding ex-
act COC curve in the middle part of fig. 2. For the base
model we also plot the ROC curve which consists of only
3 points: one is the corresponding COC, and two others
are the corner points in the ROC space. Instead of using a
weighed 0/1 loss as our splitting criterion, we can also em-
ploy a weighted Gini index used in the traditional CART
algorithm to obtain an approximate COC plot. Although
CART uses this splitting criterion for other reasons, in the
case of a decision stump we use it to again illustrate that
other surrogates for the weighted 0/1 loss produces inferior
results in terms of TP/FP rate. Even for this very simple
model we can clearly observe the gap between COC and
its approximations.

We now illustrate the performance of COC for oblique de-
cision trees where each model is obtained using the TAO
algorithm. We choose MNIST dataset and turn it into a
binary imbalanced classification in a special way, the de-
tails of it we provide in Appendix E. For this imbalanced
problem we first train the base oblique tree of depth ∆ = 3
which is the starting point in the COC path. From this point
we then follow paths in both directions by changing the
cost of FPs λ, and for each step we use the TAO algorithm
to optimize the corresponding weighted 0/1 loss. We plot
the performance of these COC curves in the right part of
fig. 2 along with the traditional ROC curve for the base tree.
Clearly, the COC significantly dominates the ROC, and is
much closer to the top left corner, and reaches the TP-rate
of 1 or FP-rate of 0 much early. The visualizations of some
of these trees can be found in fig. 8 in Appendix.

5.2. Toy 2D Illustration of COC Trees

To understand better how the decision trees behave in the
COC framework of cost sensitive learning we perform ex-
periments on a toy 2D problem and visualize the decision
boundaries of the produced oblique trees. The toy dataset
consists of N = 200 training points, and it is a balanced
binary classification problem shown in fig. 3. We first train
an oblique tree of depth ∆ = 3 with equal misclassification
costs for both classes and obtain a tree produced in the mid-
dle of fig. 3. We then follow COC paths in both directions
by either increasing or decreasing the cost of FPs, and each
time warm starting from the previous tree. Some of these
trees are visualized in the bottom row of fig. 3. The chang-
ing colors of decision regions clearly show how the more
important class dominates and covers more area of the in-
put space. The leftmost and rightmost trees correspond to
the endpoints of the path which are the intersection points
with the left and top axis of the ROC space. We can also
see how the trees keep some stability and have some resem-
blance with each other owing to the warm-starting in COC.

The top row of fig. 3 shows how the tree changes in the
traditional ROC curve. Because the only thing that changes

6

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

0.0, 0.0 0.11, 0.45 0.24, 0.78 0.57, 0.89 1.0, 1.0

0.0, 0.27 0.07, 0.61 0.24, 0.78 0.36, 0.91 0.76, 1.0
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

The path towards the negative class The path towards the positive class
Figure 3. Top: trees corresponding to the ROC curve, bottom: trees corresponding to the COC curve. Below the plot we specify the
FP-rate and TP-rate.

is the threshold probability to be in the positive class, this
can affect only the class label in the leaves. By noting that
the parent node of two leaves with the same class label can
be pruned without changing the predictive function of the
tree, one can observe how the tree is pruned and turned into
a constant classifier as the threshold probability reaches 0
or 1 corresponding to the leftmost and rightmost plots. This
clearly demonstrates the limited ability of an ROC curve
with decision trees as the only thing it can do is to change
the leaf label and prune the tree.

5.3. Imbalanced Classification Benchmarks

The results of our experiments on real-world imbalanced
classification benchmarks validate the benefit of the pro-
posed COC approach. Decision trees optimized by TAO
for a cost-sensitive 0/1 loss produce much better TP and
FP-rate performance than other established baselines such
as cost supportive CART or C5.0 and other oblique deci-
sion trees such as OC1. While we motivate COC curves to
be superior to ROCs both theoretically and experimentally,
and also illustrate the limited ability of ROCs with trees, in
the main experiments of this section we use stronger com-

parison baselines: CART and C5.0 learned using different

values of class costs each time to obtain models/points of

different TP/FP-rate, and similarly for OC1, but with differ-

ent sampling ratio (OC1 implementation does not support
costs). Comparing with ROC of a single tree would have
been unfair, and we further justify the approach of using
different costs vs a single ROC in fig. 9 of Appendix for
CART. The advantage of using different costs is clearly vis-
ible, and that is what we compare against.

Setup We perform experiments on multiple different real-
world imbalanced datasets of various sizes and of different
types of features such as credit card fraud detection, churn
prediction and email spam detection. We provide the de-

tails regarding the dataset description and preprocessing in
Appendix H.3. For the baselines, we compare against stan-
dard established decision tree methods: CART and C5.0.
Both of these methods have support for costs per class, and
so we use them to train models for different costs of FPs
to obtain a range of models in the ROC space. There are
not many implementations of oblique trees, and so we only
include OC1 (Murthy et al., 1994), which is a variation of
the greedy top-down induction technique for oblique splits.
We also attempted to run one particular implementation of
optimal trees which has support for class costs (Lin et al.,
2020), but it did not finish within the runtime limit of 2
hours even for our smallest dataset of size Ntrain = 4.9k,
D = 45. In Appendix H we provide all the details regard-
ing the experiment setup such as hyperparameter tuning
and implementation details.

Results We depict the performance of the resulting models
in terms of TP-vs-FP-rate for the test set in fig. 4. Each
point corresponds to one particular model, but we connect
these points to create a “curve” for better visualization.
Though these “curves” are commonly created with ROC,
we would like to emphasize that this is not truly a curve but
just a set of points (classifiers) connected with lines. COC
refers to oblique decision trees trained with TAO for differ-
ing costs of FPs λ. Although these are not truly optimal
models in the sense of the weighted 0-1 loss, we still refer
to them as COC, because TAO directly and effectively op-
timizes this NP-hard problem with a guarantee of a mono-
tonic decrease of an objective function.

In general we can observe how the COC dominates over the
other methods throughout the whole range of TP and FP
rates, and in several cases with a large margin, particularly
for MNIST and Epsilon datasets. One important observa-
tion is that COC is much smoother and more stable than
others showing the effectiveness of TAO in optimizing a

7

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

MNIST synthetic sensit company bankruptcy connect4
32k, 784, 1:10, 1:1 64k, 100, 1:17, 1:3 5.4k, 95, 1:30, 1:30 37k, 126, 1:19, 1:2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0
OC1

T
P

-r
at

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0
OC1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0
OC1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0
OC1

Telco churn Epsilon Email spam ULB Credit Card Fraud
4.9k, 45, 1:3, 1:3 200k, 2k, 1:100, 1:1 4.1k, 3k, 1:2.5, 1:2.5 199k, 30, 1:578, 1:576

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0
OC1

T
P

-r
at

e

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

COC
CART
C5.0
OC1

FP-rate

Figure 4. Comparison of different decision tree models in the test set. Under the dataset name we specify the training set size Ntrain,
feature dimension D, class imbalance ratio for training and test set. Each point represents one model, and they are connected for better
visualization. COC corresponds to oblique trees trained with TAO. CART and C5.0 correspond to training those algorithms with different
class costs. OC1 is obtained by using either undersampling or oversampling. All results except for the Epsilon dataset are averaged over
5 runs. The result of OC1 is missing on Epsilon and Email spam datasets because it fails to produce any results on them.

Tree Etest #leaves ∆ time (s)

OC1 28.45±2.71 709 22 1385
CART 12.01±0.50 8327 45 10
C5.0 9.68±0.26 9300 63 47

C
ov

er
ty

pe
(5

00
k,

54
,7

)

TAO 7.84±0.11 4850 16 1020

OC1 fails to produce results
C5.0 69.14±0.71 1531 257 8027
CART 62.91±0.55 708 148 131R

C
V

1
(1

5k
,4

7k
,5

2)

TAO 57.15±0.31 867 13 648

Table 1. Results on imbalanced multiclass problems. Etest is the
normalized (0-to-100) cost-based 0/1 error.

given weighted 0-1 loss at each step of the path. Greedy
top-down induction techniques provide quite unstable re-
sults since each time they need regrow the tree from scratch
and cannot optimize/warm-start from the previous tree. In
Appendix F we also provide additional comparison experi-
ments with sampling-based techniques.

Training time. In general the training time of COC is
slower than CART or C5.0, but still has manageable run-
time. For the MNIST dataset training 14 models sequen-
tially in COC takes about 150 seconds, while training the
same number of CART models takes 80 seconds. OC1 is
the slowest one taking more than 10 minutes in this setting.
Warm starting ability of TAO was essential for the speedup

in training of COC.

Multiclass problems. Though we focus on the more preva-
lent imbalanced binary-class problems, our method can be
extended to the multiclass case. By defining a weight for
every type of error in the 0/1 loss, we can directly adapt
the TAO algorithm to handle this objective. We perform ex-
periments on two naturally imbalanced multiclass datasets,
where we set the class costs to be such that the total cost of
each class in the training set are equally distributed. Table 1
shows the results: TAO achieves lower cost-based 0/1 test
error while using fewer leaves and being shallower.

6. Conclusion

Previous approaches to learn classification trees with asym-
metric class costs or imbalanced classes involve over- or
undersampling or cost-sensitive surrogate losses, postpro-
cessed to construct an ROC curve so that one can achieve
a desired false positive / true positive point. Here, we ad-
vocate for the ideal way to achieve this: the cost-optimal
curve (COC), where each classifier is accuracy or true-
positive optimal for a given false positive rate. This in-
volves a weighted 0/1 loss, which is generally NP-hard
to optimize exactly. Rather than replacing it with a sur-
rogate loss, we have given an algorithm that tries to learn
directly the COC curve for classification trees. For each

8

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

false positive rate or cost, it monotonically decreases the
weighted 0/1 loss at each iteration. While more computa-
tionally costly, experimentally this produces much better
classification trees than previous approaches in reasonable
time.

7. Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Branco, P., Torgo, L., and Ribeiro, R. P. A survey of predic-
tive modeling on imbalanced domains. ACM Computing

Surveys, 49(2):31:1–31:50, August 2016.

Breiman, L. J., Friedman, J. H., Olshen, R. A., and Stone,
C. J. Classification and Regression Trees. Wadsworth,
Belmont, Calif., 1984.

Carreira-Perpiñán, M. Á. and Tavallali, P. Alternating op-
timization of decision trees, with application to learn-
ing sparse oblique trees. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Pro-

cessing Systems (NEURIPS), volume 31, pp. 1211–1221.
MIT Press, Cambridge, MA, 2018.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. SMOTE: Synthetic minority over-sampling tech-
nique. J. Artificial Intelligence Research, 16:321–357,
2002.

Cook, E. F. and Goldman, L. Empiric comparison of mul-
tivariate analytic techniques: Advantages and disadvan-
tages of recursive partitioning analysis. J. Chronic Dis-

eases, 37(9–10):721–731, 1984.

Drummond, C. and Holte, R. C. Exploiting the cost
(in)sensitivity of decision tree splitting criteria. In Lang-
ley, P. (ed.), Proc. of the 17th Int. Conf. Machine Learn-

ing (ICML’00), pp. 239–246, Stanford, CA, June 29 –
July 2 2000.

Duarte, M. F. and Hu, Y. H. Vehicle classification in dis-
tributed sensor networks. J. Parallel and Distributed

Computing, 64(7):826–838, July 2004.

Elkan, C. The foundations of cost-sensitive learning. In
Proc. of the 17th Int. Joint Conf. Artificial Intelligence

(IJCAI’01), pp. 973–978, Seattle, Washington, USA, Au-
gust 4–10 2001.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. LIBLINEAR: A library for large linear clas-
sification. J. Machine Learning Research, 9:1871–1874,
August 2008.

Fernández, A., García, S., Galar, M., Prati, R. C.,
Krawczyk, B., and Herrera, F. Learning from Imbal-

anced Data Sets. Springer-Verlag, 2018.

Ferri, C., Flach, P. A., and Hernández-Orallo, J. Learn-
ing decision trees using the area under the ROC curve.
In Proc. of the 19th Int. Conf. Machine Learning

(ICML’02), pp. 139–146, Sydney, Australia, June 8–12
2002.

Gajowniczek, K. and Ząbkowski, T. ImbTreeAUC: An R
package for building classification trees using the area
under the ROC curve (AUC) on imbalanced datasets.
SoftwareX, 15(100755), July 2021.

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. The El-

ements of Statistical Learning—Data Mining, Inference

and Prediction. Springer Series in Statistics. Springer-
Verlag, second edition, 2009.

He, H. and Ma, Y. (eds.). Imbalanced Learning: Founda-

tions, Algorithms, and Applications. John Wiley & Sons,
2013.

He, H., Bai, Y., Garcia, E. A., and Li, S. ADASYN: Adap-
tive synthetic sampling approach for imbalanced learn-
ing. In Int. J. Conf. Neural Networks (IJCNN’08), pp.
1322–1328, Hong Kong, China, June 1–8 2008.

Holte, R. C. Very simple classification rules perform well
on most commonly used datasets. Machine Learning, 11
(1):63–90, April 1993.

Höppner, S., Baesens, B., Verbeke, W., and Verdonck, T.
Instance-dependent cost-sensitive learning for detecting
transfer fraud. Eur. J. Operational Research, 297(1):
291–300, February 16 2022.

Japkowicz, N. and Shah, M. Evaluating Learning Algo-

rithms: A Classification Perspective. Cambridge Univer-
sity Press, 2011.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proc.

IEEE, 86(11):2278–2324, November 1998.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. RCV1:
A new benchmark collection for text categorization re-
search. J. Machine Learning Research, 5:361–397, April
2004.

Liang, D., Lu, C.-C., Tsai, C.-F., and Shih, G.-A. Financial
ratios and corporate governance indicators in bankruptcy

9

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

prediction: A comprehensive study. Eur. J. Operational

Research, 252(2):561–572, July 16 2016.

Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer, M. Gen-
eralized and scalable optimal sparse decision trees. In
Daumé III, H. and Singh, A. (eds.), Proc. of the 37th Int.

Conf. Machine Learning (ICML 2020), pp. 6150–6160,
Online, July 13–18 2020.

Murthy, S. K., Kasif, S., and Salzberg, S. A system for
induction of oblique decision trees. J. Artificial Intelli-

gence Research, 2:1–32, 1994.

Raubertas, R. F., Rodewald, L. E., Humiston, S. G., and
Szilagyi, P. G. ROC curves for classification trees. Med-

ical Decision Making, 14(2):169–174, April 1994.

Sun, Y., Wong, A. K. C., and Kamel, M. S. Classification
of imbalanced data: A review. Int. J. Pattern Recognition

and Artificial Intelligence, 23(4):687–719, 2009.

Vanderschueren, T., Verdonck, T., Baesens, B., and Ver-
beke, W. Predict-then-optimize or predict-and-optimize?
an empirical evaluation of cost-sensitive learning strate-
gies. Information Sciences, 594:400–415, May 2022.

10

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

A. Appendix Abstract

We provide the proof of the equivalence between the constraint and penalty forms of the COC problem in section B, the
proofs of the cost sensitive TAO theorems in section C, the pseudocode of our method in section D, the description of
the MNIST dataset with synthetic labels and the visualization of the trees for this problem in section E, the additional
experimental comparison with sampling techniques in section F, experiments on additional datasets and the exploration of
hyperparameters in section G, and finally, the description of the experiments’ setup for reproducibility: datasets, compari-
son methods, and hyperparameters in section H.

B. Equivalence Between the Constraint and Penalty Forms of the Problem

We consider the problem in the main paper of constructing a cost-optimal curve (COC). Assume a training set
{(xn, yn)}

N
n=1 where xn ∈ X and yn ∈ {−1,+1} for n = 1, . . . , N , and a classifier T (·; θ): X → {−1,+1} with

parameters θ taking values in some set. We gave two versions of the learning problem. One is the constraint version:

min
θ

ν(θ) s.t. π(θ) ≤ p with ν(θ) =

N∑

n: yn=+1

L(yn, T (xn; θ)), π(θ) =

N∑

n: yn=−1

L(yn, T (xn; θ)) (6)

where p ∈ [0, N], L(y, y′) = 0 if y = y′ and 1 if y 6= y′ is the 0/1 loss, and ν and π are the FN and FP rate, respectively.
The other is the penalty version:

min
θ

ν(θ) + λπ(θ) (7)

where λ ≥ 0. This objective function has the form of a weighted 0/1 loss. We will also define the following function:

C(λ) = min
θ

ν(θ) + λπ(θ). (8)

Problems (6) and (7) have the same set of solutions, i.e., solving (6) for all p ∈ [0, N] produces the same set of clas-
sifiers as solving (7) for all λ ≥ 0 and hence the same COC curve, as we will prove next. Hence, instead of (6), we
solve (7), which is computationally easier with trees. Before reaching that result, we will prove several properties of the
problems. Throughout, we assume that π and ν are lower bounded (w.l.o.g. ν(θ) ≥ 0 and π(θ) ≥ 0 ∀θ), and define
“θ ∈ argminθ ν(θ) s.t. π(θ) ≤ p” or “θ ∈ argminθ (ν(θ) + λπ(θ))” to mean any global minimizer of the constraint or
penalty problem, respectively. The minimizer in θ need not be unique, but the minimum objective function value is unique.
Fig. 5 illustrates the constraint and penalty problems for a 1D dataset, where the solution can be found exactly.

Theorem B.1 (monotonicity of penalty solution). Assume π and ν are nonnegative functions of θ in problems (6) and (7).
Let λ2 > λ1 > 0 and θi ∈ argminθ (ν(θ) + λi π(θ)) for i ∈ {1, 2}. Then π(θ2) ≤ π(θ1) and ν(θ2) ≥ ν(θ1), and

ν(θ1) + λ1 π(θ1) ≤ ν(θ2) + λ2 π(θ2).

Proof. Let us prove first that π(θ2) ≤ π(θ1) by contradiction. Assume π(θ2) > π(θ1). Since θ1 is a global minimizer
for λ1, we have that ν(θ1) + λ1 π(θ1) ≤ ν(θ) + λ1 π(θ) ∀θ, in particular for θ = θ2. Hence:

ν(θ1) + λ1 π(θ1) ≤ ν(θ2) + λ1 π(θ2)⇐⇒ (9)

ν(θ1)− ν(θ2) ≤ λ1(π(θ2)− π(θ1))
(∗)
< (10)

λ2(π(θ2)− π(θ1))⇐⇒ (11)

ν(θ1) + λ2 π(θ1) < ν(θ2) + λ2 π(θ2) (12)

where in (∗) we used the fact that λ1 < λ2 and π(θ2) > π(θ1). Likewise, since θ2 is a global minimizer for λ2, we have
that ν(θ2) + λ2 π(θ2) ≤ ν(θ) + λ2 π(θ) ∀θ, in particular for θ = θ1. Hence:

ν(θ2) + λ2 π(θ2) ≤ ν(θ1) + λ2 π(θ1)

which contradicts eq. (12).

Now, to prove that ν(θ2) ≥ ν(θ1). This follows directly from eq. (10) and the fact we just proved that π(θ2) ≤ π(θ1).

11

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

replacements

xθ1θ2θ3

x ≤ θ

Y N

constraint version

p θ∗ π(θ∗) ν(θ∗)

0 θ1 0 4
1 – 2 θ2 1 2
3 – 7 θ3 3 0

penalty version

λ θ∗ π(θ∗) ν(θ∗) C(λ)

(0, 1] θ3 3 0 3λ
[1, 2] θ2 1 2 2 + λ
[2,∞) θ1 0 4 4

0 1 2 3

1

2

3

4

λ

C(θ∗(λ))

ν(θ∗(λ))

π(θ∗(λ))

Figure 5. Illustration of the constraint and penalty forms of the COC problem for a 1D training set having two classes: positive (◦) and
negative (×). The classifier is a depth-1 decision tree (1-rule) which classifies x as positive if x ≤ θ and negative otherwise. The two
tables show, for the constraint and penalty problems, the solution as a function of p or λ, respectively. The graph corresponds to the
penalty problem. Note the optimum parameter values θ∗(p) and θ∗(λ) need not be unique (e.g. moving θ1 left or right slightly in the
figure is still optimum), but the objective function value at θ∗ is unique. It can be seen that the constraint and penalty problems have the
same set of solutions over p or λ, with π(θ∗(λ)) (or ν(θ∗(λ)) being monotonically decreasing (increasing) and piecewise constant over
λ, and C(λ) being continuous, piecewise linear and strictly monotonically increasing except in the last interval, where it is constant.

Finally, from eq. (9) it follows that, either

ν(θ1) + λ1 π(θ1) < ν(θ2) + λ2 π(θ2)

if π(θ2) > 0 (strictly decreasing), or

ν(θ1) + λ1 π(θ1) = ν(θ2) + λ2 π(θ2)

if π(θ2) = 0 (constant). The latter can only happen in the last piece, because π is nonnegative and, as a function of λ,
π(θ∗(λ)) is decreasing.

Theorem B.2 (penalty objective is continuous piecewise linear). Assume π and ν are functions of θ and take values in

{0, 1, . . . , N} (this holds if they are 0/1 loss functions in problems (6) and (7)). Then C(λ) for λ > 0 is continuous and

piecewise linear, where all the pieces are strictly increasing except possibly the last piece, which may be constant.

Proof. From theorem B.1, ν and π are monotonic over θ∗(λ). Since they take values in {0, 1, . . . , N}, then both ν and
π must be piecewise constant with at most N + 1 pieces. Hence, there exist M real values 0 < λ1 < λ2 < · · · < λM

such that ν and π are constant in each interval (λi, λi+1). Hence C(λ) is linear in each interval. Further, let us show
that C must be continuous. Within each interval this follows because C is linear there. At the boundary λi between two
intervals (λi−1, λi) and (λi, λi+1) it follows because C is increasing (from theorem B.1). Indeed, write C(λ) as νi + λπi

in (λi−1, λi) and νi+1+λπi+1 in (λi, λi+1). If C was discontinuous at λi then we would have νi+λi πi 6= νi+1+λi πi+1

and since C is increasing this becomes νi + λi πi < νi+1 + λi πi+1. But this would imply that (νi, πi) has a lower value
than (νi+1, πi+1) on the right interval, contradicting the fact that (νi+1, πi+1) were global minimizers.

Theorem B.3 (equivalence of the constraint and penalty problems). Assume π and ν are nonnegative functions of θ in

problems (6) and (7). Then the two sets of solutions, of problem (6) for p ≥ 0 and of problem (7) for λ ≥ 0, are equal.

Proof. First we prove that any solution of problem (7) (for a value λ ≥ 0) is a solution of problem (6) for some value of
p. Let θ∗ ∈ argminθ (ν(θ) + λπ(θ)). This means ν(θ∗) + λπ(θ∗) ≤ ν(θ) + λπ(θ) ∀θ. Call p∗ = π(θ∗). Then we
will show that θ∗ ∈ argminθ ν(θ) s.t. π(θ) ≤ p for p = p∗, by contradiction. Assume ∃θ 6= θ

∗ with π(θ) ≤ p∗ and
ν(θ) < ν(θ∗) (i.e., a better solution of problem (6) for p∗). Then ν(θ) + λπ(θ) < ν(θ∗) + λp∗ = ν(θ∗) + λπ(θ∗),
which is a contradiction. Hence, ∀λ ≥ 0, θ∗(λ) gives a solution θ

∗(p∗) of problem (6).

12

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

Now we prove that any solution of problem (6) (for a value p ≥ 0) is a solution of problem (7) for some value of
λ. Let θ∗ ∈ argmin

θ
ν(θ) s.t. π(θ) ≤ p. Assume π(θ∗) = p. (If π(θ∗) = p∗ < p then θ

∗ is optimum for any
p ≥ p∗ and the constraint is inactive (unnecessary) ∀p ≥ p∗.) Assume ∃λ ≥ 0 such that θ′ ∈ argminθ (ν(θ) + λπ(θ))
satisfies π(θ′) = p∗ (this follows because, from theorems B.1 and B.2, C is invertible in its domain). Then, it follows
that θ∗ ∈ argmin

θ
(ν(θ) + λπ(θ)) (although it is not necessary that θ′ = θ

∗). Since θ
′ is a minimizer we have that

ν(θ′) + λπ(θ′) = ν(θ′) + λπ(θ∗) is a minimizer. This can be proven by contradiction. Assume ν(θ′) < ν(θ∗). Then θ
′

is feasible in problem (6) (since π(θ′) = π(θ∗) = p) and it has a lower objective function value than θ
∗, which contradicts

that θ∗ was a minimizer.

Theorem B.1 shows that the optimum values of ν and π as a function of λ are monotonically increasing and decreasing,
respectively, and the optimum objective C(λ) is also increasing with λ (strictly increasing except in the last, infinite
interval). Theorem B.2 shows that C(λ) is continuous and piecewise linear, hence invertible in its domain. Theorem B.3
shows that problems (6) and (7) are equivalent: the set of respective solutions over p and λ are one-to-one. That is,
the solution of the penalty form for a value of λ equals that of the constraint form for some value p; specifically, p =
π(θ∗(λ)). And, conversely, the solution of the constraint form for a value p equals that of the penalty form for some value
λ, specifically, a value λ such that π(θ∗(λ)) = p (this value is not explicit but must be found by searching over λ ≥ 0).

Finally, we give a different, simple proof for theorem B.3 but assuming the functions are smooth. This does not apply to
the 0/1 loss we focus on, but it would apply to the cross-entropy, for example.

Theorem B.4 (equivalence of the constraint and penalty problems). Assume ν(θ) and π(θ) are continuously differentiable

and nonnegative in problems (6) and (7). Then both problems have the same stationary points.

Proof. Let us apply the KKT conditions to both problems. For problem (7), we have that ∇ν(θ) + λ∇π(θ) = 0 (and
λ ≥ 0). For problem (7), the Lagrangian is L(θ, λ) = ν(θ) − λ(p − π(θ)), where λ is the Lagrange multiplier, and we
have that ∇ν(θ) + λ∇π(θ) = 0 and that either π(θ) < p and λ = 0, or π(θ) = p and λ ≥ 0. The second case (where
the constraint becomes an equality constraint) shows the stationary points of both problems are one-to-one. The first case
(where the constraint is inactive) means we obtain the same solution by setting p = π(θ) as an equality constraint.

C. Cost Sensitive TAO Theorem Statements and Proofs

Formally let T (·;Θ): X → {−1,+1} be a decision tree of a given, predetermined structure of depth ∆ with learnable
parameters Θ = {θi}i∈D ∪ {θi ∈ {−1, 1}}i∈L, whereD are the set of decision nodes and L are the set of leaf nodes. The
predictive function of a tree T (x; θ) works by routingx from the root to exactly one leaf and outputting the leaf’s class label.
The routing function at a decision node i works by applying the decision function gi(x; θi): X → {lefti, righti} ⊂
D ∪ L, which for oblique splits θi = {wi, wi0} mean “go to the left child if wT

i x + wi0 < 0, else go to the right child”.
Axis-aligned trees are a special case of oblique trees, for which wi is all zeros but one at the selected feature index and
−wi0 serves as a threshold value. The objective function for TAO in the context of cost-sensitive learning is to minimize a
weighted 0/1 loss:

E(Θ) =

N∑

n: yn=+1

L(yn, T (xn;Θ)) + λ

N∑

n: yn=−1

L(yn, T (xn;Θ)) + α
∑

i∈D

φi(θi) (13)

We add a regularization term φ(·) to decision node weights, specifically ℓ1 norm to promote sparse oblique splits. The
hyperparameter α ≥ 0 then controls the strength of the regularization.

We now show how we extend the TAO algorithm to handle this cost-sensitive 0/1 loss problem. The algorithm is based on
3 theorems. The first theorem of the original TAO states the separability condition: the objective function (13) separates
over any set of non-descendant nodes (e.g. all nodes at the same depth), and thus those can be optimized independently and
in parallel. This follows from the fact the tree makes hard decisions and that the loss is separable over individual points.
Our cost-sensitive problem is no different in this respect, and we directly use this theorem without any modification.

For presenting the next 2 theorems the following definitions are helpful: Reduced setRi ⊂ {1, . . . , N} of node i (decision
node or leaf) is the training instances that reach node i given the current tree parameters. Care points Ci ⊂ Ri of a decision
node i are the training instances in the reduced set xn ∈ Ri for which Tlefti(xn;Θlefti) 6= Tright

i
(xn;Θright

i
) where

Tc(·;Θc) is the predictive function for the subtree rooted at node c given the current tree parameters. In other words, care

13

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

points for a given decision node consists of training instances in its reduced set for which one of its children misclassifies
the instance while the other child classifies it correctly.

Theorem C.1 (Reduced problem over a decision node). Consider the objective function E(Θ) of eq. (13) and a decision

node i. Assume the parameter values Θ \ {θi} of all the nodes except i are fixed. Then, as a function of θi, eq. (13) can

be reduced to the following cost-sensitive binary classification problem:

Ei(θi) =
∑

n∈Ci: yn=+1

L(yin, gi(xn; θi)) + λ
∑

n∈Ci: yn=−1

L(yin, gi(xn; θi)) + αφi(θi) (14)

where yin = argminc∈{lefti,righti}
L(yn, Tc(xn;Θc)) is the child of i which gives the correct prediction for the instance

n.

Proof. Using the assumption that the parameter values of Θ \ {θi} of all the nodes except i are fixed it is easy to see
that the optimization problem in eq. (13) will only depend on the parameters of the node i. This follows directly from the
separability condition discussed above. Furthermore, it will only depend on the training instances in the reduced set Ri

of the node i as changes to this decision function gi(·; θi) will have no effect on the other training instances. Then, let us
analyze what can happen to a given training point n ∈ Ri by changes to this decision node i. The only thing a decision
function gi(xn; θi) can do with a given point n is to send it either to the left child or to the right child. If both of its
children gives the correct prediction or both of them misclassifies this point n, then it would not matter where to send it,
and so this point n can be dropped from the objective function, thus allowing us to define the reduced problem of eq. (14)
only over the set of care points Ci. Then for the given care point n ∈ Ci one of the children gives the correct prediction
while the other child misclassifies it, and we denote the child with the correct prediction as yin. Now, most importantly
in the context of cost-sensitive learning, if this point yn = +1 belongs to the positive class then the cost of sending it to
the wrong child is 1, while if this point yn = −1 is a negative class then the cost of sending it to the wrong child is λ.
Applying this observation to each trainning point n ∈ Ci and noting the regularization term φi(θi), one can see how the
high-level optimization problem of eq. (13) will reduce to this weighted 0/1 loss problem over the parameters of this node
θi of eq. 14.

Theorem C.2 (Reduced problem over a leaf). Consider the objective function E(Θ) of eq. (13) and a leaf node i. Assume

the parameter values Θ \ {θi} of all the nodes except i are fixed. Then, as a function of θi, eq. (13) can be reduced to the

following simple problem:

Ei(θi) =
∑

n∈Ri: yn=+1

L(yn, θi) + λ
∑

n∈Ri: yn=−1

L(yn, θi) (15)

where Ri is the reduced set of the leaf i. The optimal solution θ∗i = +1 if |R+
i | ≥ λ |R−

i | else -1, where |R+
i | (|R

−
i |) is

the number of points in the positive (negative) class in the reduced setRi of the leaf i.

Proof. By direct application of the separability condition the objective function of eq. (13) will only depend on the label
θi of the leaf node i and only on the leaf’s reduced set Ri. There are only two choices for the label θi ∈ {−1,+1}. By
simple calculation, the optimal label θ∗i then corresponds to the weighted majority class in the reduced setRi.

Multiclass problems. Although we focus on cost-sensitive binary classification problems, we should note how the TAO
algorithm can be straightforwardly extended to the multiclass case. Instead of a single cost of FPs λ, the objective function
in eq. (13) would contain K different types of costs {λk}

K
k=1 for each type of error (the more general case would involve

a K × K matrix of different types of costs, but to handle imbalanced multiclass problems we simply define a single
misclassification cost λk for a class k so that to balance the total cost across all the classes. The TAO algorithm can also
be straightforwardly adapted to this more general case). Then the reduced problem over a decision node would still be a
weighted 0/1 loss binary classification problem, but the weights coming from K different types of costs {λk}

K
k=1. The

solution to the reduced problem over a leaf node would still be a weighed majority class.

D. Pseudocode

We provide a pseudocode of TAO for training oblique decision trees for a 0/1 loss with costs in fig. 6 and a pseudocode for
obtaining a set of models in the COC framework in fig. 7.

14

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

input initial tree T (·,Θ) of depth ∆,
training set {xn,yn ∈ {−1, 1}}

N
n=1, cost of false positives λ,

regularization parameter α ≥ 0
repeat

for d = ∆ to 0 do
for all nodes node at depth d

if node is a leaf
set the label of the node to the most
costly class in the reduced set

else
fit a weighted 0/1 binary classifier
where weights come from the costs

end if
end for

end for
until stopping criteria
return tree T (·;Θ)

Figure 6. Pseudocode of TAO (reverse BFS order) for cost-sensitive learning

E. MNIST with Synthetic Labels

We turn MNIST into an imbalanced binary classification as follows: imagine splitting the 28×28 pixel image into 4
quadrants 1 2

3 4 and let Qi be the sum of the [0, 1] pixel intensities in quadrant i and H = 18. Then we define the positive
class to be an image for which (Q1 + Q4) − (Q2 + Q3) ≥ H or (Q2 + Q3) − (Q1 + Q4) ≥ H . That is, positive class
is an “(anti)diagonally dominant” image like or . This construction creates balanced classes for both training and test
set, and then we randomly undersample the positive class and add 10% label noise in the training set to make the problem
imbalanced and have some overlapping classes. This synthetic labels serve two purposes: it creates a more difficult binary
classification problem in MNIST than simple methods such as grouping of classes or selecting pairs of digits; it allows
to illustrate the superiority of oblique trees over axis-aligned ones for problems for which it is important to model the
interaction of many features or pixels.

In fig. 8 we visualize some subset of trees in the COC path for this imbalanced MNIST problem. We plot the oblique
hyperplane as a 28×28 image, where blue (negative) pixels contribute sending points to the left, and red (positive) pixels
contribute sending points to the right. The middle tree corresponds to the starting model of the COC path. Notice how all
the decision nodes except 3 is capturing this diagonal pattern, and as the path goes toward the positive class, all the decision
nodes in the rightmost tree is capturing this pattern. And in the opposite path toward the negative class we can observe that
the decision nodes start to lose this diagonal shape until the tree collapses to a single node.

F. Comparison with Sampling Techniques

Sampling based techniques such as under- or over-sampling or SMOTE are commonly used in imbalanced classification.
Here we compare their performance in the ROC space. In a similar way we obtain COC curves by changing the λ, we
can also under- or over-sample the necessary class to maintain the class ratio equal to λ, and produce a set of models in
the ROC space. In fig. 10 we compare the performance of these sampling techniques against the cost-based method. The
difference between those is not significant for the TAO algorithm, which makes sense because sampling techniques can
be regarded as a reasonable approximation to costs. However we favor more the cost based approach because it is more
principled and theoretically justified and performs well in practice.

G. Experiments on Additional Datasets and the Exploration of Hyperparameters

Fig. 11 contains experiments on additional datasets: SUSY with 4.5M training points and the CIFAR10 dataset with
features extracted from ResNet18. Fig. 12 shows the effect of the hyperparameters in our model: Depth ∆ of the tree and
the ℓ1 penalty regularization α on decision node weights.

15

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

input: training set {xn,yn ∈ {−1, 1}}
N
n=1,

depth of the tree ∆, regularization parameter α ≥ 0,
schedule parameter β > 1.

Set the base cost λ0 = N+

N−

T0(·;Θ) = TAO on complete random tree of depth ∆ with cost λ = λ0

T−
0 (·;Θ) = T0(·;Θ), λ = λ0, i = 0

repeat
λ← β λ
T−
i+1(·;Θ) = TAO on T−

i (·;Θ) as initial tree with cost λ
i← i+ 1

until false positives by T−
i (·;Θ) is zero

T+
0 (·;Θ) = T0(·;Θ), λ = λ0, i = 0

repeat
λ← λ/β
T+
i+1(·;Θ) = TAO on T+

i (·;Θ) as initial tree with cost λ
i← i+ 1

until false negatives by T+
i (·;Θ) is zero

return all trained trees {T−
i (·;Θ)}i ∪ {T

+
i (·;Θ)}i

Figure 7. Pseudocode of COC with decision trees

H. Experimental setup

H.1. COC

Implementation We implement the TAO algorithm for oblique decision trees in C++. The algorithm requires to solve a
weighed 0/1 binary classification problem over a hyperplane at a decision node, and for that we use ℓ1 regularized logistic
regression solver of LIBLINEAR (version 2.43 with support for instance weights). As an initial tree we use a complete
tree of depth ∆ and random (sampled from standard Normal distribution) initial parameters at decision nodes. We let the
TAO algorithm to run for 20 iterations. To produce a range of models in the COC framework we first train the base TAO
model for the cost of false positives λ = N+

train/N
−
train which corresponds to giving equal total cost for both classes. From

this base model we then follow two regularization paths by using the following schedules on the cost λ: λ ← β λ and
λ ← λ/β. Although β can be tuned as any other hyperparameter, which would control how close or far we move in the
COC curve, to keep experiments simple we fix it to β = 1.5. These two COC curve paths stop when FP becomes 0 in one
direction and FN becomes 0 in the other direction in the training set.

Hyperparameters The hyperparameters are the depth ∆ of the tree and the regularization parameter in decision node
weights α. We perform grid search α = {0.1, 1.0, 10.0} and ∆ = {1, 3, 4, 6} for the base tree only, and use the found best
parameters for the whole COC curve. We include depth ∆ = 1 tree in case a simple linear model happens to generalize
better.

H.2. Baselines

CART We use scikit-learn’s implementation of CART (version 1.2.2). We fully grow the tree using Gini index, but we
implement our own cost-complexity pruning. This is because scikit-learn’s implementation of pruning uses Gini
index instead of 0/1 error, which is not what the original authors of CART use (Breiman et al., 1984). We pass the
costs in the sample_weight parameter of the fit() method and also use the costs in our implementation of
cost-complexity pruning.

C5.0 We use the Linux binaries provided by the original developers3. Because the training procedure of C5.0 already
performs on pruning and selects the best model on a validation set internally, we did not perform hyperparameter
tuning. We attempted to tune the option - c which controls the severity of pruning but it did not result in better

3
https://www.rulequest.com/download.html

16

https://www.rulequest.com/download.html

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

The path towards the negative class The path towards the positive class
←−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

27058

90.6%

 9.4%

1, N 1

-1 0 1

2

17192

91.8%

 8.2%

4,

836

49.6%

50.4%

5,

3

8869

93.0%

 7.0%

6,

161

39.1%

60.9%

7, PP NN

1

-1 0 1

2

11668

98.3%

 1.7%

4,

3425

57.6%

42.4%

5,

3

6

10061

98.5%

 1.5%

12,

1739

61.4%

38.6%

13,

165

56.4%

43.6%

7, P

P

P

N

N

1

-1 0 1

2

1911

99.6%

 0.4%

4,

9950

83.7%

16.3%

5,

3

6

9802

99.9%

 0.1%

12,

4080

80.3%

19.7%

13,

1315

91.9%

 8.1%

7, P

P

P

N

N

1

-1 0 1

2

58

100.0%

 0.0%

4,

14982

88.9%

11.1%

5,

3

386

100.0%

 0.0%

6,

11632

92.3%

 7.7%

7, PP NN

Figure 8. Visualization of trees for MNIST with synthetic labels. The color of the leaves show the class label: red is for positive class,
blue is for negative class. The percentages in the leaves correspond to the proportion of negative (top number) and positive (bottom
number) classes.

models than the default case. The implementation of C5.0 has support for class costs, and we provide it via the
data.costs file.

OC1 We use the author’s implementation in C. We use the option of only considering the oblique hyperplane. We tune the
number of restarts from the list {10, 20, 50} and the number of random jumps from {5, 10, 20}. In several cases the
method fails to produce any result due to not being able to find the split. The implementation does not support costs,
and so use either under- or over-sampling, and report the better one.

GOSDT When attempting to run this method, we use the author’s original implementation4. However with default param-
eters it did not finish in 2 hours even for our smallest dataset Telco Churn (Ntrain = 5k,D = 45), and so we did not
run it with any other dataset.

SMOTE For experiments with sampling techniques we use the implementation of SMOTE provided in
imbalanced-learn Python package version 0.10.1.

H.3. Datasets

For datasets that do not have a separate test set we randomly sample (stratified) 20% of the data and use it as a test set. For
categorical features we apply one-hot encoding. For datasets with features of different scale and magnitude, we scale them
individually to have mean zero and variance one.

MNIST (LeCun et al., 1998) with synthetic labels We use raw pixel intensities scaled between 0 and 1 as input. The
details on how we create the imbalanced binary labels are described in section E.

SensIT (Duarte & Hu, 2004) Vehicle classification task based on the features collected by wireless sensor networks. The
dataset has 3 classes and we combine the two most populous classes into a majority (negative) class, and then we fur-
ther undersample the minority class to create an imbalanced problem. Obtained from the LIBSVM dataset repository:
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

4
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

17

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

company bankruptcy connect4 sensit

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CART diff. costs

CART ROC

T
P

-r
at

e

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

CART diff. costs

CART ROC

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

CART diff. costs

CART ROC

FP-rate

Figure 9. Comparison of using traditional ROC curve (based on changing the threshold) versus using different costs each time during
the tree learning process for CART. The approach based on using different costs is better, and this is what we compare against in the
experiments of fig. 4 in the main paper.

Dataset Ntrain Ntest D N+ : N−
train N+ : N−

test

MNIST synthetic labels 32 469 10 000 784 1:10 1:1
SensIT 64 209 19 705 100 1:17 1:3
Taiwan Company Bankruptcy 5 455 1 364 95 1:30 1:30
Connect4 37 424 13 512 126 1:19 1:2
Telco Churn 4 922 2 110 45 1:3 1:3
Epsilon 202 174 100 000 2 000 1:100 1:1
ULB Credit Card Fraud 199 364 85 443 30 1:578 1:576
Email Spam 4 137 1 035 3 000 1:2.5 1:2.5
Covertype∗ 406 708 174 304 54 1:77 1:77
RCV1∗ 20 564 30 000 47 236 1:1800 1:1800

Table 2. Specifics of the datasets used in our experiments. N is a sample size, D is a feature dimension size. ∗ for multiclass datasets
we specify the class imbalance as ratio of the majority class to the minority class.

Taiwan company bankruptcy (Liang et al., 2016) The features are various stock market characteristics. The dataset is
naturally imbalanced. Obtained from the UCI machine learning repository:
https://archive.ics.uci.edu/ml/datasets/Taiwanese+Bankruptcy+Prediction

Connect4 The features are positions of the game, and the label is the outcome: win, draw or lose. We use the class “win”
as the majority class, and merge the other two classes into one and undersample to create an imbalanced problem. We
download the dataset from the UCI machine learning repository:
https://archive.ics.uci.edu/ml/datasets/connect-4

Telco Churn The task is to predict which customer will churn. The features are various characteristics of the customer.
The dataset is relatively imbalanced. Obtained from Kaggle:
https://www.kaggle.com/datasets/blastchar/telco-customer-churn.

Epsilon is one of the datasets used in the Large Scale Learning Challenge 2008. Obtained from the LIBSVM dataset
repository. We undersample the positive to create a highly imbalanced problem.

ULB Credit Card Fraud One of the most popular datasets in Kaggle for fraud detection. The original features were PCA
transformed to keep anonymity except for Amount and Time features. The dataset is highly imbalanced. The link in
Kaggle:
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Email Spam The task to classify emails as spam or not-spam. The original features are word counts of the most common
3000 words. We preprocess these raw counts by applying tf-idf normalization. The dataset is relatively imbalanced.

18

https://archive.ics.uci.edu/ml/datasets/Taiwanese+Bankruptcy+Prediction
https://archive.ics.uci.edu/ml/datasets/connect-4
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

TAO CART C5.0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

Ta
iw

an
C

om
pa

ny
B

an
kr

up
tc

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

Te
lc

o
C

hu
rn

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate

M
N

IS
T

sy
nt

he
ti

c

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

weighted
undersample
oversample
smote

FP-rate

Figure 10. Comparison of weighted learning vs common sampling techniques for the 3 datasets. Results are averaged over 5 runs.

Obtained from Kaggle:
https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv

Covertype Classification task of pixels into 7 forest cover types based on attributes such as elevation, aspect, slope,
hillshade, soil-type, and more. The dataset is naturally imbalanced with the following class counts: 211840, 283301,
35754, 2747, 9493, 17367, 20510. We use 30% of the dataset as test set, and perform zero-mean, variance-one
normalization. Obtained from the UCI machine learning repository:
https://archive.ics.uci.edu/dataset/31/covertype

RCV1 Text categorization dataset (Lewis et al., 2004). We obtain it from the LIBSVM multiclass data collection:
http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html. We use the same
train/test split described there. The features are normalized log TF-IDF vectors; they are sparse. The dataset has many
classes (=52) and is highly imbalanced with several classes containing less than 10 points while some containing 1000
points.

19

https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv
https://archive.ics.uci.edu/dataset/31/covertype
http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

Beyond the ROC curve: classification trees using cost-optimal curves, with application to imbalanced datasets

SUSY, Ntrain = 4.5M CIFAR10, Ntrain = 50k
Ntest = 0.5M,D = 18 Ntest = 10k,D = 512

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COC

CART

C5.0

T
P

-r
at

e

FP-rate
0 0.02 0.04 0.06 0.08 0.1

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

COC

CART

C5.0

OC1

FP-rate

Figure 11. Experiments on additional datasets. For the SUSY dataset, the training times for CART and C5.0 curves take 1320 and
850 seconds, respectively. For the COC approach, the training time is 2300 seconds. OC1 code fails to produce any results for the
SUSY dataset. For CIFAR10 dataset we use convolutional features from a pretrained ResNet18 model. We turn CIFAR10 into binary
classification problem by using the classes “plane”, “ship” and “truck” as the positive class, and the rest as negative.

MNIST synthetic dataset

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ = 1

∆ = 3

∆ = 4

∆ = 6

T
P

-r
at

e

FP-rate
0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α = 10

α = 1

α = 0.1

FP-rate
sensit dataset

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

∆ = 1

∆ = 3

∆ = 4

∆ = 6

T
P

-r
at

e

FP-rate
0 0.1 0.2 0.3 0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

α = 10

α = 1

α = 0.1

FP-rate

Figure 12. Effect of hyperparameters in COC for the two datasets: MNIST synthetic (top) and sensit (bottom). The two hyperparameters
are the depth ∆ of the tree and the ℓ1 penalty regularization α on decision node weights.

20

