
IMPROVED MULTICLASS ADABOOST FOR IMAGE CLASSIFICATION:
THE ROLE OF TREE OPTIMIZATION

Arman Zharmagambetov ∗ Magzhan Gabidolla ∗ Miguel Á. Carreira-Perpiñán

Dept. Computer Science & Engineering, University of California, Merced. Merced, CA, USA
Email: {azharmagambetov,mgabidolla,mcarreira-perpinan}@ucmerced.edu

ABSTRACT

Decision tree boosting is considered as an important and widely rec-

ognized method in image classification, despite dominance of the

deep learning based approaches in this area. Provided with good

image features, it can produce a powerful model with unique proper-

ties, such as strong predictive power, scalability, interpretability, etc.

In this paper, we propose a novel tree boosting framework which

capitalizes on the idea of using shallow, sparse and yet powerful

oblique decision trees (trained with recently proposed Tree Alter-

nating Optimization algorithm) as the base learners. We empirically

show that the resulting model achieves better or comparable perfor-

mance (both in terms of accuracy and model size) against established

boosting algorithms such as gradient boosting or AdaBoost in num-

ber of benchmarks. Further, we show that such trees can directly and

efficiently handle multiclass problems without using one-vs-all strat-

egy employed by most of the practical boosting implementations.

Index Terms— image classification, adaboost, oblique trees,

tree optimization

1. INTRODUCTION

Image classification is an important branch of pattern recognition

and computer vision where machine learning techniques were able

to show state-of-the-art performances. Particularly, deep learning

has become extremely successful in recent years due to the represen-

tation learning capability (i.e. automatically extracting meaningful

features) and possibility to efficiently train a complex architecture

in end-to-end fashion. On the other hand, ensembles of decision

trees (forests) are also powerful models which are widely used in

many image processing applications [1], including object detection

[2, 3], visual tracking [4], shape recognition [5]. Their success is

attributed to the number of practical advantageous, such as strong

generalization property, scalability to large data, fast inference, etc.

Some examples of forests: random forests [6] train each tree inde-

pendently on a different data sample and on a different subset of fea-

tures, boosted trees [7, 8] sequentially train trees on the reweighted

versions of data. Among others, AdaBoost [7] is often referred to as

among the best out-of-the-box classifier. It has been well studied in

machine learning and statistical literature, and has been shown to be

successful in many applications [9].

The main idea behind AdaBoost is sequentially training and

combining a collection of base (weak) learners to produce a strong

model. This is a stepwise procedure where each consecutive step

involves tranining a learner which is encouraged to improve overall

model performance. Decision trees are known to be a common

choice for the base learner [10, 11], though one can use any model

∗equal contribution

satisfying the weak-learning condition (i.e. better than a random

guess). These trees are usually trained using top-down greedy algo-

rithms such as CART [12] which have a topical issue of being highly

suboptimal [11]. Moreover, for multiclass problems with K classes,

modern practical boosting frameworks (e.g. [13, 14]) fit K trees

at each additive step (instead of one) implementing one-versus-all

strategy which adds additional overhead to the training time and

model size. One possible explanation for using K trees is that in

order to use a single tree it has to be grown large enough to satisfy

the weak-learning criterion which yields to overfitting, and, when

boosted, results to poor performance [15]. Throughout this paper,

we define one boosting step (or iteration) as fitting K class classifier

(whether it is a single tree or K trees) and the corresponding update

of the weights.

In this paper, we propose to use a better optimized shallow and

sparse oblique decision tree, trained with the recently proposed Tree

Alternating Optimization (TAO) algorithm [16, 17]), as the base

learner. They achieve both low bias and low variance yielding a

high predictive power, at the same time being fast (at training and

inference). In combination with boosting, these trees achieve fur-

ther improvement in terms of classification accuracy leveraging the

power of ensemble learning. Moreover, it is now sufficient to train

a single tree at each boosting step without necessity of growing a

large tree. In section 4, we demonstrate that our boosted TAO trees

not only show competitive performance, but also can achieve decent

accuracy on well known image classification benchmarks.

2. BOOSTING FRAMEWORK

Although TAO trees can be embedded into any existing framework,

we use AdaBoost [7] due to its simplicity and high predictive power.

Originally developed for the binary classification task, AdaBoost has

several multiclass extensions [18]. AdaBoost.MH is one of them

which was specifically designed for multiclass problems and we use

it to validate our method.

Consider a regular supervised classification task with the train-

ing set {(xn,yn)}
N
n=1 ⊂ R

D × R
K of D-dimensional real-valued

input instances and their labels (in K classes). Here, we represent

the ground truth label (yn) as a vector in R
K , where the correct class

is denoted as yn,k = 1 (for k ∈ {1, . . . ,K}) and all other classes

as yn,K\k = −1. As in other AdaBoost variations, AdaBoost.MH

trains an ensemble of base classifiers (decision trees in our case) in

additive manner (i.e. stepwise, not in parallel) and each step involves

minimizing the following regularized loss function:

E(Θ) =
N∑

n=1

L(wn,yn,T(xn)) + α
∑

i∈N

φi(θi) (1)

where wn is the weights used by the boosting algorithm; T(xn) is

the vector valued output of a tree with parameters Θ = {θi}i∈N

and N is the set of all tree nodes. The regularization term φi (with

hyperparameter α ≥ 0) penalizes the parameters θi of each node.

Notice that the original AdaBoost formulation does not introduce

any penalty and it is our modification. In this paper, we choose φi to

be ℓ1 norm in order to achieve sparsity. Further, in AdaBoost.MH,

the loss function L(·) is the weighted multiclass exponential loss

defined below:

L(wn,yn,T(xn)) =

K∑

k=1

wn,k · exp(−yn,k ·Tk(xn)) (2)

where wn,k is the weight per class and per training instance. Mini-

mizing (1) at each step with the loss function defined in (2) leads to

the pseudocode of our modified version of the AdaBoost.MH pro-

vided in Algorithm 1. At each step t, a base classifier is trained with

the current weights using the TAO algorithm (see section 3). Then

the weights are updated according to the formula shown in the algo-

rithm. The final prediction of the model is given as a sum of T base

classifiers (one might need to take argmax to obtain a predicted

class).

Algorithm 1: AdaBoost.MH with TAO trees

input training set {(xn,yn)}
N
n=1; number of trees T ;

initial weights

{wn,k = 1
2N

, wn,K\k = 1
2N(K−1)

}N,K

n=1,k=1;

for t = 1 to T do
Tt ← train a TAO tree on the training set with the

current weights and loss function (1) (see

Algorithm 2)

obtain predictions: {ŷn}
N
n=1 ← Tt({xn}

N
n=1);

calculate the loss (eq. (1) without regularization):

L̂ =
∑N

n=1

∑K

k=1wn,k · exp(−yn,k · ŷn,k)

update the weights: wn,k ← wn,k
exp(−yn,k·ŷn,k)

L̄

for n = 1, . . . , N and k = 1, . . . ,K
end

return Final classifier: F(x) =
∑T

t=1 Tt(x)

3. THE TAO TREES

The choice of the base learner is crucial in boosting. Though the

framework is quite generic, decision trees have long thought to be

the model of choice. That said, boosting of other types of learners

(such as kernel SVMs, neural networks) have been studied before

[19]. However, their superiority, in terms of performance, has not

been observed empirically [20, sec. 2.1]. Decision trees are tradi-

tionally trained using recursive top-down algorithms such as CART

[12] or C4.5 [21] which have several limitations: greedy nature of

the algorithm yields suboptimal trees [11], they do not directly opti-

mize a desired loss function, internal nodes of a tree typically use a

single feature to make a split (i.e. axis-aligned or univariate split).

In this work, we propose to use a better optimized shallow and

sparse oblique decision tree with constant leaves as a base learner.

Here, oblique means that a split is done by the linear threshold-

ing function of the form: send to the right child if f(x;θ, b) =
θ
Tx− b ≥ 0 and to the left child otherwise, where θ ∈ R

D, b ∈ R

(bias term) are node parameters and x is the input feature vector. A

linear split clearly takes advantage of the better feature utilization

(versus univariate split) which typically results to the more power-

ful model. Unfortunately, previously proposed methods on boosting

oblique trees [22, 23] did not produce expected improvements since

the training of the individual tree was done based on the greedy ap-

proximate impurity minimization [12, 24] which can generate sub-

optimal trees, as we have discussed earlier. However, the recently

proposed TAO algorithm [16, 17] can find good approximate op-

tima of the decision tree optimization problem and shows dramatic

improvement in training oblique trees [25]. Moreover, it has been al-

ready successfully applied with bagging [26, 27] and training more

complex decision trees (e.g. neural trees) [28].

Instead of growing a tree, TAO takes as input an initial tree with

predefined structure and parameters, and minimizes the loss function

defined in eq. (1) jointly over the parameters (θi, bi) of all nodes i.

Throughout this paper, we initialize the TAO tree (at each boosting

iteration) from a complete tree of depth ∆ and random node param-

eters. Then TAO solves the optimization problem in eq. (1) by fixing

one part of the tree and training another part which involves optimiz-

ing over a set of independent nodes. Here, “independent” means any

set of non-descendant nodes (e.g. at the same depth). Consider any

pair of such independent nodes i and j. Since an input instance fol-

lows unique root-to-leaf path, i and j receive disjoint set of training

instances. Furthermore, we fix the parameters of all the remaining

nodes (including descendants and ancestors). Then according to the

separability condition [16, 17], E from eq. (1) separates over the

parameters of nodes i and j:

E(Θ) = Ei(θi, bi) + Ej(θj , bj) + Erest(Θrest) (3)

where Θrest is the parameters of the fixed part of a tree. In other

words, we can minimize over the parameters of each node separately.

The solution for the individual node minimization problem depends

on its type:

Leaves In eq. (2), we need to obtain a vector valued output (in R
K).

It turns out that, for the constant leaves, the solution can be computed

exactly [29] and it is equal to:

y
∗
k = 0.5 · log

w+
k + ǫ

w−
k + ǫ

, for k = 1, . . . ,K (4)

where w+
k is the sum of the weights for which yn,k = 1 and w−

n

is the sum of the weights for which yn,k = −1, considering train-

ing instances n that reach the leaf i. A small number ǫ is added

for numerical stability. We emphasize that we do not apply one-

versus-all strategy at each boosting step but rather handle multiple

classes directly at each leaf. This is possible with TAO trees since it

achieves much better performance (without overfitting) with shallow

trees satisfying the weak-learning condition.

Internal nodes There are only two possible outcomes: sending an

input instance to the left or right. Therefore, it can be shown that the

problem in eq. (1) reduces to the following weighted binary classifi-

cation problem on the training instances that reach the node i:

min
θi

∑

n∈Ri

νnL(yn, fi(xn;θi, bi)) + λφi(θi) (5)

where L is the 0/1 misclassification loss, yn ∈ {right,left} is a

“pseudolabel” indicating the child which gives a lower value of E

for input xn under the current tree; similarly, fi ∈ {right,left}
is a linear thresholding function discussed above which sends

the instance xn to the corresponding child of i. Finally, νn =
|L(wn,yn,Tleft(xn)) − L(wn,yn,Tright(xn))| is the absolute

difference of losses incurred of sending xn to the right or left child.

Here, L(·) comes from eq. (2) and it incorporates the currents

weights wn coming from the previous boosting iteration. It is worth

mentioning that TAO can handle these weights directly, whereas

most of the boosting implementations use various sampling tech-

niques. Since optimizing the misclassification loss in eq. (5) is an

NP-hard problem, we further approximate it with a convex surrogate

(e.g. logistic) loss and solve it efficiently using LIBLINEAR [30].

As a result, we obtain the Algorithm 2 presented below. It repeatedly

updates nodes’ parameters depth-wise. Additionally, it is possible to

minimize them in parallel at each depth (this follows from the sepa-

rability condition). One pass over all nodes defines a TAO iteration

and one can continue to iterate until convergence occurs. In practice,

we stop when the maximum number of iterations is reached.

Algorithm 2: Learning a base classifier (tree) with TAO

input training set {(xn,yn)}
N
n=1;

initial tree T(·;Θ) of depth ∆;

Boosting weights {wn,k}
N,K

n=1,k=1;

for depth d = 0 to ∆ do

for i ∈ nodes at depth d do

if i is a leaf then
yi ← fit a constant classifier at a leaf eq. (4)

with the current boosting weights;

else
θi ← fit a weighted binary classifier (eq. (5))

with the current boosting weights;

end

end

end

return trained tree T

4. EXPERIMENTS

Dataset Ntrain Ntest D K

Letter 16 000 4 000 16 26

MNIST 60 000 10 000 784 10

ImageNet subset 62 855 12 800 8192 64

Table 1. Datasets used in our experiments: number of points for

training (Ntrain) and test (Ntest) sets, feature vector dimensionality

D, number of classes K.

We perform extensive evaluations of our proposed method on

image classification problems. First, we validate our boosting frame-

work on two mid-sized popular character recognition tasks: MNIST

and Letter. For MNIST, we directly use grayscale pixel values (in

[0,1]), whereas, for Letter, the features are image descriptors such

as edge counts and statistical moments. We provide a basic dataset

characteristics, such as its size (N), input dimensionality (D) and

number of classes (K) in table 1. Training/test partition is given for

MNIST, and we use the last 4 000 samples as the test set for Let-

ter. Next, we perform experiments on larger scale dataset - Imagenet

[33] (a subset of arbitrarily selected 64 classes, given in suppl. mat.).

Unfortunately, applying boosted trees directly on image pixels does

not produce a desired performance. Therefore, we use as features the

output of the last convolutional layer from a pretrained VGG16 deep

net. Datasets used in our experiments and their descriptions can be

found in the supplementary material for this paper.

Forest Etest (%) #pars. FLOPS T ∆

RF 3.05±0.06 1M (3 482) 100 46
SAMME 2.96±0.05 6M (29 489) 1 000 30
RF 2.84±0.06 10M (34 507) 1 000 48
sNDF [31] 2.80±0.12 22M (22M) 80 10
XGBoost 2.73±0.00 390k (16 812) 1 000 30
MH-CART 2.73±0.00 307k (1 400) 200 7

M
N

IS
T

ADF [3] 2.71±0.10 3.6M (2 500) 100 25
XGBoost 2.67±0.00 324k (8 000) 1 000 8
SAMME 2.28±0.02 13.3M (16 000) 1 000 16
XGBoost 2.17±0.00 540k (57 385) 10 000 30
rRF[32] 2.05±0.02 (160k) (2 500) 100 25
MH TAO 1.96±0.06 837k 54 041 20 8
XGBoost 1.94±0.00 615k (51 873) 10000 8
MH-TAO 1.92±0.07 2.3M 93 523 30 8
MH-TAO 1.72±0.08 7.9M 312 904 100 8

XGBoost 4.30±0.00 353k (25 277) 2 600 10
RF 3.77±0.06 419k (2 836) 100 34
ADF [3] 3.52±0.12 (1M) (2 500) 100 25
RF 3.44±0.09 4.2k (27 820) 1000 36
XGBoost 3.35±0.00 768k (118k) 26k 6

L
et

te
r

rRF[32] 2.98±0.15 (180k) (2 500) 100 25
sNDF [31] 2.92±0.17 2.4M (2.4M) 70 10
SAMME 2.83±0.15 651k (1 600) 100 16
SAMME 2.58±0.09 6.7M (16 000) 1 000 16
MH-CART 2.53±0.00 524k (4 500) 500 9
MH-TAO 2.00±0.05 778k 4 998 30 11
MH-TAO 1.65±0.05 2.7M 16 815 100 11

MH-CART >8 days runtime 100 9
MH-CART 25.07 9400 (500) 100 5
RF 13.62±0.32 2.5M (23k) 100 220
RF 12.67±0.13 12.7M (109k) 500 218

Im
ag

eN
et

su
b
se

t

RF 12.51±0.11 25.4M (224k) 1000 220
XGBoost 12.51±0.00 596k (81k) 6400 50
XGBoost 11.01±0.00 782k (124k) 32000 50
XGBoost 10.78±0.00 973k (181k) 64000 50
MH-TAO 10.65±0.05 3.4M 105k 30 12

Table 2. Comparison of different forests (sorted by decreasing test

error). MH-TAO – our method, SAMME – AdaBoost.SAMME

with a CART base learner, RF – Random Forest, MH-CART – Ad-

aBoost.MH version with CART style trees as base learners. We re-

port the test error (avg±stdev over 5 repeats), number of parameters

and inference FLOPS (numbers in parentheses are estimates), num-

ber of trees T and maximum depth of the forest ∆. Arrows indicate

the improvement of MH-TAO over MH-CART. Note: only 1 itera-

tion of MH-CART was performed on ImageNet subset due to long

training time.

We compare our boosted TAO trees (denoted as MH-TAO)

with the state-of-the-art tree ensembling algorithms: Random

Forests [6] (denoted as RF, implemented in scikit-learn [13]),

AdaBoost.SAMME [34] with a CART base learner (denoted as

SAMME, implemented in scikit-learn [13]); and XGBoost [14]

(note that it trains K trees at each boosting iteration). Another im-

portant baseline is AdaBoost.MH with traditional axis-aligned trees

(denoted as MH-CART) since here we can directly compare the

effects of different base learners within the same framework. We use

multiboost framework [18] available online which implements

AdaBoost.MH version with a tree learner similar to CART (called

Hamming trees). Hyperparameter (e.g. T ensemble size, depth ∆,

learning rate, etc.) optimization for all these methods is carried out

by grid-search on a validation set. We also report the published

results of some of the recent tree based ensembles ([3, 31, 32]) from

the corresponding papers on the same datasets.

Specifically for the TAO algorithm, we implemented it in C++

with parallel processing using OpenMP. For each dataset, we tune

the regularization penalty α and the number of TAO iterations. We

initialize a TAO tree from a complete tree of depth ∆ and random

node parameters at each boosting iteration. We use ℓ1 norm as a

regularizer (φ in eq. (1)) in order to achieve sparsity. Therefore,

the node optimization reduces into ℓ1-regularized logistic regression

(see section 3) which we solve using LIBLINEAR [30].

4.1. Results

Table 2 reports the results. We sort all methods by the decreasing test

error for each dataset. First, the comparison with the direct baseline

(MH-CART) convincingly demonstrates superiority of our proposed

method and it is consistent throughout all datasets. MH-TAO was

able to achieve significantly less test error using much smaller or

comparable number of trees which additionally have smaller depths.

It is worth to mention that [18] reports better results for MH-CART

on MNIST and Letter but it was achieved using enormous ensemble

size (105 trees) which we were unable to replicate due to long train-

ing time. As for the other baselines, experiments show similar out-

comes: MH-TAO beats all other forests on all three datasets we tried:

MNIST, Letter and Imagenet subset. It is quite surprising given MH-

TAO has a less number of trees (T) and the maximum depth (∆) is

much smaller compared to other methods. For instance, we were

able to achieve a decent performance using only 30 boosting itera-

tions (equivalent to the number of trees). However, keep in mind that

oblique trees generally have more parameters since each node stores

a vector in R
D . Therefore, we additionally show the actual or esti-

mated number of parameters (by summing parameters of all nodes)

and inference time as a number of floating point operations (by find-

ing the average flops in all root-to-leaf paths, see table 2: columns

“#pars.” and “FLOPS”, respectively). Results show that MH-TAO

generally has comparable model sizes. For example, it outperforms

all other methods on MNIST and Letter using only 20-30 trees which

have similar (or fewer) number of parameters and inference time.

Increasing the number of boosting iterations can further improve the

performance (e.g. 100) but requires more parameters. This was pos-

sible thanks to the sparsity penalty that we apply since it helps to

eliminate redundant features but preserves the accuracy. On Ima-

genet subset, roughly speaking, the number of parameters increases

as XGBoost < MH-TAO . RF. This is partly due to the high input

vector dimensionality, though the depth is still smaller compared to

other methods. Note that even though MH-CART has smaller model

size, it performs significantly worse compared to other forests.

Figure 1 shows the comparison of the test error as a function of

the number of trees for several boosting methods: MH-TAO, MH-

CART, SAMME and XGBoost. Results clearly indicate that MH-

TAO considerably outperforms all other methods achieving the best

test error for the fixed number of trees (T). Moreover, it starts to

improve drastically within the first several iteration. In terms of

runtime, training MH-TAO, as in any other method, depends on a

scale of the problem and choice of hyperparameters: dataset size,

maximum depth, number of iterations, etc. Non-greedy nature of

the TAO algorithm and stepwise learning in boosting definitely add

some overhead to the training time. That said, we claim that MH-

TAO has a manageable training time. For example, 100 boosted trees

on MNIST were trained in 228 minutes and the same number of it-

erations on Letter took 8.7 minutes. As a comparison, it took about

928 minutes for MH-CART, 25 minutes for SAMME, 6.5 minutes

for XGBoost to complete 100 boosting iterations on MNIST. Simi-

Letter MNIST

100 200 300 400 500
1

2

3

4

5

6

Boosting iterations

E
te

st
(%

)

50 100 150 200

2

3

4

5

Boosting iterations

Fig. 1. Comparison of different boosting methods as a function of

the number of boosting iterations. MH-TAO and MH-CART refers

to AdaBoost.MH with the corresponding base learners. SAMME

refers to AdaBoost.SAMME with traditional CART tree as a base

learner. Arrows indicate the improvement of MH-TAO over MH-

CART. Train error is not shown since it quickly approaches zero.

larly, training a model on Letter (100 boosting iterations) took about

12 minutes for MH-CART, 8.0 seconds for SAMME, 8.8 seconds for

XGBoost. It is true that XGBoost and SAMME have faster training

times for the same number of iterations on the given benchmarks.

However, keep in mind that our current implementation is still in de-

velopment phase and can be improved. Moreover, the higher runtime

of MH-TAO is justified by the low test error it achieves.

5. CONCLUSION

In this paper we propose a new boosting framework which combines

AdaBoost.MH with the more powerful and better optimized (using

TAO) oblique trees. Our idea builds on the hypothesis that com-

monly used base learners such as axis-aligned trees, trained with

CART-style algorithms, are suboptimal, and thus, replacing them

opens a possibility for an improvement. For this to succeed we rely

on the TAO algorithm, which leverages the power of optimization

in tree learning, and we train oblique trees using it. Indeed, on

several image recognition tasks, we demonstrated that the boosted

TAO trees outperform or achieve comparable performance not only

in terms of accuracy but also in terms of model size and inference

time. Methodologically, the proposed method directly fits multiclass

base learner without using one-vs-all strategy which helps to avoid

additional overhead. To the best of our knowledge, this is the first

successful application of the boosted oblique trees which shows a

significant improvement over the boosted traditional trees. More-

over, the final algorithm is straightforward to implement and has a

manageable training time which lead to the immediate practical ap-

plicability in various fields, such as image classification, signal pro-

cessing, data mining, etc. The main directions of our future work

include: merging TAO trees with other more recent boosting algo-

rithms (e.g. XGBoost, LightGBM) and extending our framework to

handle multi-label problems. In a separate paper, TAO boosted trees

have shown considerable improvement in regression problems [35].

Acknowledgments. Work supported by NSF award IIS–2007147.

6. REFERENCES

[1] Antonio Criminisi and Jamie Shotton, Decision Forests for

Computer Vision and Medical Image Analysis, Advances in

Computer Vision and Pattern Recognition. Springer-Verlag,

2013.

[2] Paul Viola and Michael J. Jones, “Robust real-time face de-

tection,” Int. J. Computer Vision, vol. 57, no. 2, pp. 137–154,

May 2004.

[3] Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saf-

fari, Peter M. Roth, and Horst Bischof, “Alternating decision

forests,” in CVPR’13, Portland, OR, June 23–28 2013, pp.

508–515.

[4] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu,

“Decision forests: A unified framework for classification,

regression, density estimation, manifold learning and semi-

supervised learning,” Foundations and Trends in Computer

Graphics and Vision, vol. 7, no. 2–3, pp. 81–227, 2012.

[5] Yali Amit and Donald Geman, “Shape quantization and recog-

nition with randomized trees,” Neural Computation, vol. 9, no.

7, pp. 1545–1588, Oct. 1997.

[6] Leo Breiman, “Random forests,” Machine Learning, vol. 45,

no. 1, pp. 5–32, Oct. 2001.

[7] Robert E. Schapire and Yoav Freund, Boosting. Foundations

and Algorithms, Adaptive Computation and Machine Learning

Series. MIT Press, 2012.

[8] Jerome H. Friedman, “Greedy function approximation: A gra-

dient boosting machine,” Annals of Statistics, vol. 29, no. 5,

pp. 1189–1232, 2001.

[9] Rich Caruana and Alexandru Niculescu-Mizil, “An empirical

comparison of supervised learning algorithms,” in ICML’06,

Pittsburgh, PA, June 25–29 2006, pp. 161–168.

[10] Ludmila I. Kuncheva, Combining Pattern Classifiers: Methods

and Algorithms, John Wiley & Sons, second edition, 2014.

[11] Trevor J. Hastie, Robert J. Tibshirani, and Jerome H. Friedman,

The Elements of Statistical Learning—Data Mining, Inference

and Prediction, Springer Series in Statistics. Springer-Verlag,

second edition, 2009.

[12] Leo J. Breiman, Jerome H. Friedman, R. A. Olshen, and

Charles J. Stone, Classification and Regression Trees,

Wadsworth, Belmont, Calif., 1984.

[13] Pedregosa et al., “Scikit-learn: Machine learning in Python,”

J. Machine Learning Research, vol. 12, pp. 2825–2830, Oct.

2011, Available online at https://scikit-learn.org.

[14] Tianqi Chen and Carlos Guestrin, “XGBoost: A scalable

tree boosting system,” in SIGKDD 2016, San Francisco, CA,

Aug. 13–17 2016, pp. 785–794.

[15] B. Kégl, “The Return of AdaBoost.MH: Multi-Class Hamming

Trees,” arXiv:1312.6086, Dec. 2013.

[16] Miguel Á. Carreira-Perpiñán and Pooya Tavallali, “Alternat-

ing optimization of decision trees, with application to learning

sparse oblique trees,” in Advances in Neural Information Pro-

cessing Systems (NeurIPS’18).

[17] Miguel Á. Carreira-Perpiñán, “The Tree Alternating Optimiza-

tion (TAO) algorithm: A new way to learn decision trees and

tree-based models,” arXiv, 2021.

[18] Balázs Kégl and Róbert Busa-Fekete, “Boosting products of

base classifiers,” in ICML’09, Montreal, Canada, June 14–18

2009, pp. 497–504.

[19] Leo J. Breiman, “Bias, variance, and arcing classifiers,” Tech.

Rep. 460, Dept. of Statistics, University of California, 1996.

[20] Zhi-Hua Zhou, Ensemble Methods: Foundations and Algo-

rithms, Chapman & Hall/CRC Machine Learning and Pattern

Recognition Series. CRC Publishers, 2012.

[21] J. Ross Quinlan, C4.5: Programs for Machine Learning, Mor-

gan Kaufmann, 1993.

[22] C. Yu and D. B. Skillicorn, “Parallelizing boosting and bag-

ging,” Tech. Rep. 2001–442, Dept. of Computing and Infor-

mation Science, Queens University, Feb. 2001.

[23] Claudia Henry, Richard Nock, and Frank Nielsen, “Real boost-

ing a la Carte with an application to boosting oblique decision

tree,” in Proc. of the 20th Int. Joint Conf. Artificial Intelligence

(IJCAI’07), Hyderabad, India, Jan. 6–12 2007, pp. 842–847.

[24] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induc-

tion of oblique decision trees,” J. Artificial Intelligence Re-

search, vol. 2, pp. 1–32, 1994.

[25] Arman Zharmagambetov, Suryabhan Singh Hada, Magzhan

Gabidolla, and Miguel Á. Carreira-Perpiñán, “Non-greedy al-

gorithms for decision tree optimization: an experimental com-

parison,” in Int. J. Conf. Neural Networks (IJCNN’21), Virtual

event, July 18–22 2021.

[26] Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán,

“Smaller, more accurate regression forests using tree alternat-

ing optimization,” in Proc. of the 37th Int. Conf. Machine

Learning (ICML 2020).

[27] Miguel Á. Carreira-Perpiñán and Arman Zharmagambetov,

“Ensembles of bagged TAO trees consistently improve over

random forests, AdaBoost and gradient boosting,” in Proc. of

the 2020 ACM-IMS Foundations of Data Science Conference

(FODS 2020), Seattle, WA, Oct. 19–20 2020, pp. 35–46.

[28] Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán,

“Learning a tree of neural nets,” in Proc. of the IEEE Int.

Conf. Acoustics, Speech and Sig. Proc. (ICASSP’21), Toronto,

Canada, June 6–11 2021, pp. 3140–3144.

[29] Robert E. Schapire and Yoram Singer, “Improved boosting al-

gorithms using confidence-rated predictions,” Machine Learn-

ing, vol. 37, pp. 297–336, Dec. 1999.

[30] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin, “LIBLINEAR: A library for large

linear classification,” J. Machine Learning Research, vol. 9,

pp. 1871–1874, Aug. 2008.

[31] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and

Samuel Rota Buló, “Deep neural decision forests,” in Proc.

15th Int. Conf. Computer Vision (ICCV’15), Santiago, Chile,

Dec. 11–18 2015, pp. 1467–1475.

[32] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun,

“Global refinement of random forest,” in CVPR’15, Boston,

MA, June 7–12 2015, pp. 723–730.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei, “ImageNet: A large-scale hierarchical image

database,” in CVPR’09, Miami, FL, June 20–26 2009, pp. 248–

255.

[34] Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie, “Multi-

class AdaBoost,” Statistics and Its Interface, vol. 2, no. 3, pp.

349–360, 2009.

[35] Arman Zharmagambetov, Magzhan Gabidolla, and Miguel Á.

Carreira-Perpiñán, “Improved boosted regression forests

through non-greedy tree optimization,” in Int. J. Conf. Neu-

ral Networks (IJCNN’21), Virtual event, July 18–22 2021.

