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Abstract

Decision forests are among the most accurate models in

machine learning. This is remarkable given that the way

they are trained is highly heuristic: neither the individ-

ual trees nor the overall forest optimize any well-defined

loss. While diversity mechanisms such as bagging or boost-

ing have been until now critical in the success of forests,

we think that a better optimization should lead to better

forests—ideally eliminating any need for an ensembling

heuristic. However, unlike for most other models, such as

neural networks, optimizing forests or trees is not easy, be-

cause they define a non-differentiable function. We show,

for the first time, that it is possible to learn a forest by op-

timizing a desirable loss and regularization jointly over all

its trees and parameters. Our algorithm, Forest Alternating

Optimization, is based on defining a forest as a paramet-

ric model with a fixed number of trees and structure (rather

than adding trees indefinitely as in bagging or boosting).

It then iteratively updates each tree in alternation so that

the objective function decreases monotonically. The algo-

rithm is so effective at optimizing that it easily overfits, but

this can be corrected by averaging. The result is a forest

that consistently exceeds the accuracy of the state-of-the-art

while using fewer, smaller trees.

1. Introduction

In the past two decades, decision tree ensembles (forests)

have been recognized as among the most accurate of all ma-

chine learning (ML) models for regression, classification

and other tasks. This is evidenced by their widespread use

in practical applications (from fraud detection to ranking)

and by regularly being at the top of leaderboards in ML com-

petitions and practitioner surveys (such as Kaggle or KD-

nuggets). While achieving the best performance possible

does require some hyperparameter tuning, this job is much

easier compared to neural networks, for example. For this

reason they are often considered off-the-shelf algorithms.

At the same time, the training algorithm for forests

seems outdated, given the larger, increasing role that numer-

ical optimization has played in ML in recent years. Indeed,

to train a forest, one does not choose a loss function and reg-

ularization terms over a parametric model and optimize that

on a training set. Instead, one relies on two building blocks.

First, a procedure to learn an individual tree. This is almost

always based on a greedy recursive partitioning procedure,

such as CART [5], C4.5 [25] or its variations. Second, a

procedure to create the ensemble. The most successful ones

are bagging and feature sampling (in Random Forests (RF))

and boosting (in AdaBoost and Gradient Boosting (GB)).

Neither of these building blocks define a global objective

function of the forest’s parameters and optimize it, instead

they rely on local, proxy objectives (e.g. purity in learning

tree splits in CART, or the local loss in GB). Indeed, the only

way the model improves its accuracy is by adding more pa-

rameters (more nodes in a tree or more trees in a forest),

not by optimizing existing parameters. This leads to much

larger models than is necessary. The undeniable success of

forests has been attributed to intuitive but slippery concepts

such as the diversity of the base learners (trees). For RFs

and boosting, multiple conflicting theories have been put

forward [1, 4, 12, 19, 23, 24, 26, 27]. It is fair to say that no-

body really understands why RF, AdaBoost or GB forests

work. It also seems reasonable that jointly optimizing over

the trees should make them naturally diverse, just as neu-

rons in the same layer of a neural network differ from each

other when optimized with backpropagation.

We do not seek to explain why current forest algorithms

work. We seek to learn forests using solid optimization prin-

ciples, bringing them into the mainstream of modern ML,

and as a result learn even better forests. Indeed, we can

interpret some recent advances as being due to a better op-

timization. One view of some forms of boosting connected

it with optimization [12, 23]. Gradient boosting (GB) [13],

possibly the type of forest that generally leads to the high-

est accuracy, relies on an attempt to make boosting close

to an optimization in model space that follows a functional

gradient. Unfortunately, GB relies on multiple approxima-

tions (including the use of CART to learn individual trees),

and results in the number of trees growing indefinitely and

greedily. The latter is also true of AdaBoost and Random



Forests. Adding more and more trees to a forest (with some

care, e.g. using a small step size in GB) often leads to the

highest accuracy and overfits very slowly. However, it also

is very inefficient in parameter use. Each tree contributes

very little to the total, and pruning a forest a posteriori often

reduces considerably the number of trees without hurting

much the accuracy. It stands to reason that, if we could opti-

mize properly a forest jointly over all parameters in all trees,

we could achieve the same accuracy with fewer trees, even.

Another recent advance is the Tree Alternating Optimiza-

tion (TAO) algorithm, which puts decision trees firmly into

modern ML. TAO is able to optimize a well-defined loss

function and regularization over a tree of fixed structure,

monotonically decreasing the objective function at each iter-

ation, and scaling to large datasets and trees. TAO can learn

quite general types of trees, beyond the axis-aligned trees

used in traditional forests, and vastly outperforms CART

and C4.5 [34]. In particular, sparse oblique trees (having

hyperplane splits with few nonzero weights) have proven

very powerful. In a series of papers [8, 15, 31, 32], using

TAO as base learner with any of the classic ensemble mecha-

nisms (bagging, AdaBoost, GB) has been shown to produce

forests that are more accurate while using fewer, shallower

trees. This is compelling evidence for the importance of

optimization in learning forests.

In this paper, we propose the first algorithm (as far as

we know) that can optimize a global objective function of

all the parameters of a forest of predetermined structure

(number, type and structure of trees), by iteratively decreas-

ing the objective function given initial random parameters.

This makes it possible to pick a loss and regularization, and

a parametric form for the forest, and optimize exactly that.

Our algorithm, Forest Alternating Optimization (FAO), is

described in section 4. It relies heavily on TAO, which we

review in section 3. FAO works so well at optimizing on the

training set that it can make the forest overfit easily for rea-

sons described in section 5. We can avoid this by averaging

several independent FAO forests, and this results in forests

that exceed the state of the art in both accuracy and forest

size, as shown experimentally in section 6.

2. Related work

The ensemble learning literature is very large and we di-

rect the reader to reviews [22, 35]. Here, we focus on the

most widespread type of ensembles, forests, where the base

learners are trees. A fundamental notion in forests is diver-

sity: the trees must differ from each other for the forest to

improve over a single tree. However, this conflicts with the

fact that each tree must itself be accurate. Boosting [26] was

originally motivated by the use of weak learners (having

accuracy just above chance), and indeed forests of stumps

have worked well in some applications [29]. However, in

practice, stronger learners are generally better [17, section

10.11]. Many mechanisms have been proposed to make the

learners diverse. The most important ones are training on

different data subsets (bagging [3] or subsampling), on dif-

ferent feature subsets [2, 18], or sequentially by boosting

(of which many variants exist, such as AdaBoost [11] or

Gradient Boosting (GB) [13]). Exactly what type of forest

is best in practice will depend on the task, but it is prob-

ably fair to say that Random Forests (RF) can achieve a

very high accuracy with little hyperparameter tuning, while

GB can improve that somewhat with more hyperparameter

tuning. RFs are exceedingly fast to train, since the trees

can be trained in parallel. GB is inherently sequential and

thus much slower, but some heavily engineered implemen-

tations such as XGBoost [9] or LightGBM [21] have made

GB very popular in recent years. That traditional algorithms

for forests do not optimize a global objective and instead im-

prove accuracy by progressively adding trees has motivated

approaches to postprocess a forest, such as removing trees

[35], or optimizing the leaves [14] or the step sizes [20].

In terms of algorithms to learn the individual trees, most

approaches (including RF, AdaBoost and GB) use CART

[5], C4.5 [25] or a variation of them, with axis-aligned trees.

The Tree Alternating Optimization (TAO) algorithm [6, 7]

has made it possible to optimize a desired loss both for

axis-aligned and for oblique trees, and it produces trees that

are smaller but more accurate than CART-style algorithms.

This has correspondingly translated into smaller but more

accurate forests when using TAO with bagging [8, 31], Ad-

aBoost [16, 32, 33] and GB [15].

3. Optimizing a single tree:

Tree Alternating Optimization (TAO)

Traditional tree learning algorithms such as CART or

C4.5 work by greedy recursive partitioning. Starting from

a single (root) node, each node is split into two children

if doing so improves a locally defined criterion (purity or

variance of the labels of the instances it receives). If the

node is split, it becomes a decision node and its parame-

ters (feature and threshold) are frozen thereafter. Otherwise

it is left as a leaf, whose label is the average (regression)

or majority class (classification) of its instances. In con-

trast, TAO works in the same way one would train, say, a

neural network: by defining a parametric model (tree struc-

ture and type of decision nodes and leaves) and an objective

function (loss and regularization), and optimizing that. But,

rather than using gradients (which do not apply, since the

tree defines a nondifferentiable function), one uses alternat-

ing optimization over groups of nodes.

Assume we have a training set {(xn,yn)}
N
n=1 ⊂

R
D × R

E of (instance,label) pairs for either regres-

sion or classification. A decision tree with parameters

Θ = {{ϑi}i∈D, {θj}j∈L} defines a predictive function

τ (x;Θ): R
D → R

E as follows. The tree has a fixed



structure with decision nodes indexed by a set D and leaf

nodes indexed by a set L. For simplicity, we will consider a

complete binary tree of depth ∆ (i.e., having 2∆ leaves and

2∆− 1 decision nodes). Each decision node i ∈ D sends an

input instance x to its right child if a test is satisfied, other-

wise to its left child (i.e., the decision is binary, not stochas-

tic). The test, with parameters ϑi, thresholds either a single

feature for axis-aligned trees (say, “x7 ≥ 0.3”) or a linear

combination for oblique trees (say, “wT
i x ≥ wi0”). Each

leaf j ∈ L outputs a constant prediction θj ∈ R
E . Given

this parametric model, TAO seeks to optimize the following

objective function:

min
Θ

E(Θ) =
N
∑

n=1

L(yn, τ (xn;Θ))

+ λ
∑

i∈D

φ(ϑi) + µ
∑

j∈L

ψ(θj)

(1)

where L is a loss function (say, the ℓ2 loss), and φ and ψ are

regularization terms (say, ℓ1 or ℓ2 norms) with hyperparam-

eters λ, µ ≥ 0. Sparse oblique trees result from regulariz-

ing the decision nodes with an ℓ1 penalty (φ(ϑi) = ‖wi‖1),

which encourages sparsifying the hyperplanes. (For axis-

aligned trees, the regularization is interpreted as equalling

λ if using one feature and 0 if using no features.) This

can result in making some decision nodes redundant (when

wi = 0) so they can be pruned at the end. Thus, TAO can

actually learn the tree structure, subject to it being a subset

of the initial tree.

TAO is based on two theorems [6, 7]. First, eq. (1) sepa-

rates over any subset of non-descendant nodes (e.g. all the

nodes at the same depth); this follows from the fact that the

tree makes hard decisions. All such nodes may be optimized

in parallel. Second, optimizing over the parameters of a

single node i simplifies to a well-defined reduced problem

over the instances that currently reach node i (the reduced

set Ri ⊂ {1, . . . , N}). The form of the reduced problem

depends on the type of node:

Decision node If node i ∈ D sends an input instance x to

the left child, propagating x down that subtree (whose

parameters are fixed) to a leaf results in a certain out-

put (given by that leaf’s linear predictor). Similar argu-

ments hold for the right child. Therefore, the loss term

L(yn, τ (xn;Θ)) in eq. (1) can take only one of two pos-

sible values for each xn ∈ Ri. Then, the problem of op-

timizing (1) over ϑi can be equivalently formulated as

a weighted 0/1 loss binary classification problem where

xn has a “pseudolabel” which denotes the child achiev-

ing the lower loss. It is weighted because the loss of the

best child is different for each instance. This problem

is NP-hard but can be well approximated with a convex

surrogate such as an ℓ1-regularized logistic regression.

We can guarantee a monotonic decrease in (1) by updat-

ing ϑi only if it improves over the previous step. For

axis-aligned splits the optimal solution is found exactly

by enumeration.

Leaf Optimizing (1) over leaf j ∈ L is equivalent to opti-

mizing the j’s predictor on its reduced set Rj , as seen

by replacing τ (xn;Θ) in (1) with θj . The solution is

given by an average or soft thresholding operation on

the labels of Rj .

Given an initial tree structure with initial parameter values,

TAO repeatedly visits nodes in reverse breadth-first search

order. Each iteration trains all nodes at the same depth (in

parallel) from the leaves to the root, by solving their re-

duced problems, monotonically decreasing the objective (1).

With oblique trees, the complexity of one TAO iteration is

∆ times that of a logistic regression on the training set.

4. Optimizing a forest:

Forest Alternating Optimization (FAO)

Given the definitions and notation of the previous sec-

tion for single decision trees, we now consider an ensem-

ble of T such trees (axis-aligned or oblique, with con-

stant leaves), i.e., a decision forest. In this paper, we con-

sider a forest predictive function of the form F(x;Θ) =
∑T

t=1
τ t(x;Θt): R

D → R
E (we can also handle other

types of function, such as using a majority vote, which will

be reported elsewhere). We need not consider a coefficient

for each tree (the “step size” in Gradient Boosting) because

it can be absorbed within each τ t (more precisely, within

each leaf label). Given a training set {(xn,yn)}
N
n=1 of (in-

stance,label) pairs, we want to learn a forest by optimizing

the following objective function:

E(Θ) =
N
∑

n=1

L(yn,F(xn;Θ))

+ λ

T
∑

t=1

∑

i∈Dt

φ(ϑti) + µ

T
∑

t=1

∑

j∈Lt

ψ(θtj).

(2)

As in (1), this has the form of a loss function (additive

over the training instances), and regularization terms on

the parameters of the decision nodes and leaves of all trees

(also additively over trees and nodes), with hyperparame-

ters λ, µ ≥ 0. The parameters Θt of tree t are the decision

node parameters {ϑti}i∈Dt
and leaf labels {θtj}j∈Lt

. For

simplicity, we will assume each tree has the same structure

(complete of depth ∆). Our formulation of the forest learn-

ing is perfectly standard when comparing it with how one

learns most ML models (such as SVMs or neural nets), i.e.,

as a regularized empirical risk. However, it is very differ-

ent from how forests have been traditionally learned in the



classic frameworks (Random Forests, AdaBoost, Gradient

Boosting), where we greedily add one tree at a time, freez-

ing their parameters as we go. We define the learning as a

joint optimization over all the parameters of a well-defined

parametric model, loss function and regularization. The hy-

perparameters of the forest (number of trees T , depth ∆,

regularization λ, µ) can be determined by standard model

selection techniques such as cross-validation.

We now show how to optimize eq. (2). Although we can

handle quite general types of losses, we give a simplified

derivation assuming the loss function satisfies L(y,y1 +
y2) = L(y − y1,y2) ∀y,y1,y2 ∈ R

E . This holds for

any loss of the form L(y,y′) = l(y − y′) (such as the

ℓp loss), by the associative property: l(y − (y1 + y2)) =
l((y − y1) − y2). In this paper we focus primarily on the

ℓ22 loss. We cannot apply gradient-based methods to (2) be-

cause the forest function F is not differentiable. Instead, we

apply alternating optimization in the following two forms.

Alternating optimization over trees In this type of step,

we optimize one tree at a time given the remaining trees are

fixed. Firstly, the loss over instance n can be written as:

L(yn,F(xn;Θ)) = L

(

yn,

T
∑

u=1

τu(xn;Θu)

)

=

L(yt
n, τ t(xn;Θt)), with yt

n = yn −
T
∑

u=1,u6=t

τ u(xn;Θu)

by using the previous property. yt
n can be seen as the resid-

ual for instance n given the predictions of all trees other

than t. Hence, if we fix the parameters of all trees except

tree t, we have:

min
Θt

E(· · ·Θt · · · ) =

N
∑

n=1

L(yt
n, τ t(xn;Θt))

+ λ

T
∑

t=1

∑

i∈Dt

φ(ϑti) + µ

T
∑

t=1

∑

j∈Lt

ψ(θtj) ⇔
(3)

min
Θt

Et(Θt) =

N
∑

n=1

L(yt
n, τ t(xn;Θt))

+ λ
∑

i∈Dt

φ(ϑti) + µ
∑

j∈Lt

ψ(θtj).

(4)

So optimizing over tree t’s parameters reduces to a problem

of exactly the form (1) that TAO can handle. In, effect, we

fit tree t (with its private regularization terms) to the resid-

uals given all the other trees. Since TAO is guaranteed to

decrease (4) or leave it unchanged, updating tree t mono-

tonically decreases the overall objective function (2).

Alternating optimization over all leaves In this type of

step, we optimize over the labels of all leaves of all trees

given the decision nodes’ parameters are fixed. First, write

the predictive function of a tree in the following form:

τ (x; {ϑi}i∈D, {θj}j∈L) =
∑

j∈L

θj ϕj(x),

with ϕj(x) = I (ρ (x; {ϑi}i∈D) = j)

(5)

where I is an indicator function and ρ: R
D → L is the

routing function of the tree, which maps an input instance

to the leaf it reaches under the tree. In other words, ϕj(x) is

1 in the input space region of leaf j and 0 elsewhere. Note

ρ depends only on the decision nodes’ parameters. In the

above form, the tree can be seen as a sum of nonlinear basis

functions {ϕj}j∈L (whose support is given by the decision

nodes) with coefficients {θj}j∈L given by the leaf labels.

With that notation, we have that optimizing (2) over all the

leaf labels is equivalent to:

min
{{θtj}j∈Lt

}T
t=1

N
∑

n=1

L

(

yn,

T
∑

t=1

∑

j∈Lt

θtj ϕtj(xn)

)

+ µ

T
∑

t=1

∑

j∈Lt

ψ(θtj).

(6)

Since ϕtj does not depend on any leaf labels, the second

argument of the loss L is a linear function of the leaf labels.

Hence, eq. (6) is a regularized regression problem (ridge

regression with the ℓ2 loss, Lasso with the ℓ1 loss), which

can be solved jointly over all the leaf labels of all the trees

with efficient algorithms. Thus, this step also monotonically

decreases the overall objective function (2).

Note that optimizing over all the leaves of a single tree

separates over each leaf (by the separability condition in

TAO), while optimizing over all leaves of all trees does not

separate. However, as noted above, it still can be solved

effectively, and it makes considerable progress because the

leaves make up half of all the nodes in a forest.

4.1. Overall FAO algorithm

At each iteration we optimize over tree t = 1, . . . , T
(using TAO) and then optimize over all leaves jointly. The

initial parameters are just as in TAO: random for each node

of each tree. We terminate when the parameters change less

than a set threshold or when we reach a set number of it-

erations. The complexity of each iteration is T times that

of one TAO iteration (T∆ logistic regressions for all trees

total), plus the complexity of the leaves’ optimization. With

ℓ2 regression, the latter is a sparse linear system of T 2∆E
parameters (T trees each with 2∆ leaves each with an E-

dimensional vector).

Averaging multiple FAO forests As noted in section 5,

FAO is very effective at optimizing equation (2) over a train-

ing set, so much so that it can easily overfit. While this



can be corrected to some extent by model selection (cross-

validation over the forest hyperparameters), we find we ob-

tain better generalization by averaging several FAO forests.

Specifically, we train Q forests F1(x), . . . ,FQ(x) (each

with T trees) independently on the entire training set, each

with a different random initialization. The result is a for-

est with QT trees F(x) = 1

Q
(F1(x) + · · · + FQ(x)) =

∑Q

q=1

∑T

t=1
τ qt(x) (where the 1

Q
factor has been absorbed

into each τ qt). As discussed in the next section, this version

of FAO forests achieves the most accurate forests, and we

evaluate it in different datasets in section 6.

5. Optimization vs generalization, and smooth-

ness of the forest

Armed with the FAO algorithm, we can now choose the

size and number of trees, the loss function on a training set,

and the regularization terms, and efficiently find a good lo-

cal optimum of (2). In this section, we show that, while this

is true, it can easily lead to a phenomenon where the forest

predictive function produces local regions of nonsmooth-

ness (“islands”) that hurt the generalization performance.

We make our argument in several steps.

FAO is very effective at optimizing the training problem

Fig. 1 shows, as a function of the number of FAO iterations,

the training and test error for FAO forests under various ini-

tialization conditions: random parameters, or the first trees

from a GB forest, or bagged TAO trees, or even trees ob-

tained from an average of FAO forests (each trained on the

whole dataset with random initialization). On the training

set (left/middle plots), we see the objective function mono-

tonically decreases, achieving in very few iterations a much

lower error than a GB forest of the same size. This confirms

that a proper optimization can make a much better use of an

available parameter budget. However, on the test set (right

plot), the error increases practically as soon as FAO starts

optimizing, indicating overfitting. While the test error does

not always increase, particularly if we use a strong leaf regu-

larization, it generally does, even with noiseless data. What

is going on here?

Nonsmooth forests: the “islands” phenomenon The ag-

gressive overfitting observed above is due to forests being

a highly flexible model that can be controlled locally. Let

us discuss these two things. First, flexibility. Both deci-

sion trees and forests define piecewise constant predictive

functions. In a tree, each region of constant value is given

by a leaf, so there are L regions with L leaves. In a forest

with T trees each of L leaves, each region is the intersec-

tion of T leaves (one from each tree). So there is an ex-

ponential number of regions (LT at most, though many are

empty because they correspond to non-intersecting leaves).

This shows why forests are much more powerful than sin-

gle trees: while a tree can be grown as large as desired, with

a training set of N instances we cannot label more than N

leaves. The forest can label an exponential number of re-

gions with those N instances using just TL leaves. Sec-

ond, locality. In a decision tree, changing the label of a

leaf changes the predictive function only in that leaf’s re-

gion, but nowhere else. In a forest, the value of a region

is now a function of the labels of the T leaves that define

it. So, changing the value of a region requires changing the

value of (some of) those T leaves, which in turn changes

the value of the regions they intersect. But still the changes

remain local. This is very different from a global model,

such as a linear model, where changing the value at any

point affects all other points. The flexibility and locality of

forests means that they can happily create a nonsmooth pre-

dictive function F, particularly when learned with a pow-

erful optimization algorithm such as FAO, and easily inter-

polate the training data. This is illustrated in fig. 2, which

shows a regression problem of a 2D ground-truth function

with no noise. We observe a phenomenon of “islands” of

error, where a region has a distinctly larger error than sur-

rounding regions. We can explain this intuitively as follows.

Imagine each leaf of each tree is made up of a “good” part,

near the training instances in that leaf (on which its label

depends), and a “bad” part, far from the data. Since the leaf

predicts a constant label, the generalization will be worse in

the “bad” part. A region of a forest is the intersection of T

leaves, so some regions will result from intersecting “bad”

parts, and will generalize worse. Fig. 2 shows examples of

“good” and “bad” regions (middle/right plots). The island’s

phenomenon arises more aggressively with outliers, since

they create entirely “bad” leaves, but we have observed it

regularly with noiseless data.

In summary, we conclude that the overfitting tendency

observed with FAO is innate to the type of function that

forests can represent. FAO, in doing its job well (optimiz-

ing the training set problem), simply brings it out. Note

that overfitting, particularly with noise or outliers, has also

been reported with AdaBoost and GB [10, 30]. In GB, it

is controlled by regularizing the leaf labels and by using a

smaller step size when adding trees to the forest. However,

this forces the forest to have many trees.

Regularization helps but is not good enough As de-

scribed, forests exhibit a particular kind of nonsmoothness.

They are not alone in being able to overfit—many other flex-

ible models, such as neural networks, also are. The stan-

dard way to control for this is to use a regularization term

that smoothes the model and to tune its hyperparameter via

cross-validation. Fig. 3 (left and middle) shows representa-

tive results of doing this using an ℓ1 or ℓ2 penalty on the

label values, which encourages them to be small. Indeed,

this helps to determine an optimal amount of regularization,

but the resulting forests have higher error than simply bag-

ging TAO trees. There may be other forms or regularization
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Figure 2. Illustrative example of the “islands phenomenon” in 2D with T = 3 trees of depth ∆ = 6 fitted on N = 250 points. Left:

training set (black dots) and contours of the ground truth function. Middle-left: signed error plot of the FAO forest on the entire input space.

Dark-red and dark-blue regions indicate a larger error. Middle-right: example of a “bad” region, i.e., an “island” of large error (top), and of

a “good” region (bottom), showing the tree leaves that make up each region. Right: plot of the signed error of the GB forest on the entire

input space. It is smoother and has overall a lower test error. This phenomenon is also illustrated in the UC Merced logos in the paper title

page, considering the image as a regression dataset from 2D pixel space to 3D RGB space (left: original logo, right: prediction by a forest

of 3 trees of depth 10); zoom in to see details.

that work better, but here we consider a different approach,

described next.

Averaged FAO forests achieve best results The above ar-

guments show that a FAO forest is a very strong, low-bias,

high-variance model. Returning to the spirit of ensemble

learning, an average of such models (described in section 4)

should remain low-bias but with lower variance, hence gen-

eralize better. This is indeed what we observe, consistently.

As shown in fig. 3 (right), it now results in lower test error

than a bagged or GB forest, while also using fewer trees.

It is instructive to compare an average of FAO forests

with a Random Forest (RF). Both average a low-bias, flex-

ible base learner: for RFs, a large, fully grown (unpruned)

axis-aligned tree—although this is far less flexible than a

FAO forest. Each RF tree is learned using CART, which

means it is not well optimized and is bigger than necessary.

Also, it is trained using a random subset of features and

a random boostrap sample of training instances (bagging),

which increases diversity and has been empirically shown

to produce more accurate RFs. In contrast, each FAO forest

is much better optimized (using FAO) and using all features

and all training instances (we observe this works better than

bagging or sampling features). The individual FAO forests

are diverse enough through their different random initializa-

tion. This makes sense in that, as fig 2 shows, the partic-

ular geometric arrangement of the exponential number of

regions in the forest is somewhat arbitrary (given the much

smaller number of training samples) and a different initial-

ization changes it considerably.

6. Experiments

This section shows our experimental results on real-

world data. We demonstrate that the averaged FAO forests

consistently dominate over other tree-based ensembling

frameworks in accuracy while generating compact mod-

els. In most cases, the accuracy gap is noticeably large

compared to the established frameworks, such as XGBoost,

which makes FAO a strong competitor with the state-of-

the-art performance. To show that, we consider several re-

gression and classification benchmarks of varying sizes and

across different domains. We start with the main compari-

son results on machine learning benchmarks and report the

training runtime of our algorithm. We then finalize the sec-

tion by analyzing the impact of forest size and number of
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Figure 3. Left and middle: test (solid lines) and train (dash-dotted lines) RMSE errors when training T = 10 trees of depth ∆ = 6 with

FAO for different leaf regularization on the cpuact dataset. Although the training error is lower for FAO, simply bagging TAO trees achieves

a better generalization error. Right: generalization error for FAO, GB and bagging. Here, each FAO forest consists of 5 trees. Then, for

FAO, 100 trees in the X axis means 20 FAO forests each consisting of 5 trees.

Classification Regression

Forest Etest (%) #pars. T ∆

SPORF 2.89±0.04 (143M) 1k 50
XGBoost 2.20±0.00 107k 1k 6
LightGBM 2.02±0.00 121k 1k 10
XGBoost 1.91±0.00 505k 10k 6

M
N

IS
T

(6
0
k
,7

8
4
,1

0
)

GB-TAO 1.65±0.02 3M 500 7
LightGBM 1.62±0.00 642k 10k 21
GB-TAO 1.55±0.02 7.2M 1.4k 7
avg-FAO 1.48±0.06 658k 60 6
avg-FAO 1.39±0.04 968k 90 6
avg-FAO 1.33±0.04 4.9M 300 8

SPORF 22.51±0.10 (110M) 100 569
XGBoost 22.19±0.00 84k 2k 6
SPORF 21.65±0.26 (1.1B) 1k 571
XGBoost 21.39±0.00 705k 20k 6
LightGBM 20.69±0.00 1.8M 20k 27

n
ew

s2
0

(1
6
k
,6

2
k
,2

0
)

LightGBM 20.01±0.00 182k 2k 28
GB-TAO 18.76±0.01 746k 50 6
GB-TAO 18.13±0.00 1.0M 100 6
avg-FAO 17.45±0.21 500k 50 4
GB-TAO 16.65±0.04 1.7M 800 4
avg-FAO 16.59±0.13 998k 100 4

LightGBM 30.32±0.00 1.0M 14.3k 18
XGBoost 30.15±0.00 174k 100k 6
GB-TAO 29.38±0.04 39k 1 12
SPORF 28.63±0.07 26k 10 20
SPORF 27.07±0.20 106k 100 10

C
IF

A
R

1
0
0

(5
0
k
,5

1
2
,1

0
0
)

GB-TAO 26.98±0.04 1.2M 750 8
avg-FAO 26.93±0.07 594k 50 8
GB-TAO 26.86±0.02 2.0M 1.2k 8
SPORF 26.71±0.05 530k 500 10
GB-TAO 26.64±0.02 3.3M 400 6
avg-FAO 26.55±0.12 725k 80 6

SPORF 19.9124 (271M) 100 102
SPORF 19.7344 (2.7B) 1k 109
XGBoost 19.6282 151k 300 8
XGBoost 19.6214 196k 100 10
LightGBM 19.6164 153k 100 23

S
U

S
Y

(4
.5

M
,1

8
)

LightGBM 19.5998 230k 300 21
XGBoost 19.5902 2.0M 1k 10
LightGBM 19.5748 1.5M 1k 23
avg-FAO 19.5104 233k 50 8
avg-FAO 19.4994 459k 100 8

Forest Etest #pars. T ∆

XGBoost 2.60±0.00 60k 100 10
XGBoost 2.51±0.00 42k 1k 4

cp
u
ac

t
(5

k
,2

1
)

GB-TAO 2.42±0.02 18k 30 6
LightGBM 2.27±0.00 19k 100 34
LightGBM 2.25±0.00 91k 1k 21
GB-TAO 2.23±0.02 31k 50 6
avg-FAO 2.22±0.01 34k 50 6
avg-FAO 2.20±0.01 68k 100 6
avg-FAO 2.18±0.00 102k 150 6

LightGBM 6.57±0.00 9.1k 100 19
XGBoost 6.40±0.00 419k 500 10
XGBoost 6.39±0.00 739k 1k 10
LightGBM 6.22±0.00 45.5k 500 20
LightGBM 6.15±0.00 91k 1k 23
GB-TAO 4.61±0.17 616k 50 8

C
T

-s
li

ce
(4

3
k
,3

8
4
)

GB-TAO 4.60±0.17 1.7M 100 8
avg-FAO 4.56±0.12 1.3M 100 8
GB-TAO 4.47±0.24 780k 50 10
avg-FAO 4.44±0.17 872k 50 10
GB-TAO 4.47±0.24 2.3M 100 10
avg-FAO 4.37±0.18 1.7M 100 10

XGBoost 3.66±0.00 119k 100 10
XGBoost 3.58±0.00 793k 1k 10
LightGBM 3.54±0.00 153k 100 114
GB-TAO 3.49±0.01 256k 50 12
LightGBM 3.48±0.00 766k 1k 109

ca
sp

(4
5
k
,9

)

avg-FAO 3.45±0.02 359k 50 12
GB-TAO 3.43±0.00 481k 100 12
avg-FAO 3.40±0.01 711k 100 12
GB-TAO 3.39±0.01 887k 200 12
avg-FAO 3.37±0.01 1.4M 200 12

XGBoost 9.05±0.00 153k 100 10
LightGBM 9.03±0.00 153k 100 37
XGBoost 9.00±0.00 568k 300 10
LightGBM 8.92±0.00 460k 300 43

y
ea

r
(4

5
0
k
,9

0
)

LightGBM 8.92±0.00 1.5M 1k 43
XGBoost 8.91±0.00 1.8M 1k 10
GB-TAO 8.81±0.02 119k 30 6
GB-TAO 8.77±0.01 200k 50 6
GB-TAO 8.73±0.01 402k 100 6
avg-FAO 8.72±0.00 392k 100 6
avg-FAO 8.70±0.00 786k 200 6

Table 1. Comparison of different forest-based models, sorted by decreasing test error. We report a 0-1 error Etest(%) for classification,

RMSE for regression (mean±std over 5 repeats) and model size. The dataset name is followed by the training set size N , feature dimension

D and number of classes K (or nothing for regression). T is the total number of trees in the forest, and ∆ the maximum depth.

FAO iterations.

Setup We compare averaged FAO forests of oblique trees

against GB with TAO. We include SPORF [28] forests,

which also use sparse oblique trees but they are greedily

induced. Additionally, we include highly optimized GB

packages of axis-aligned trees: XGBoost [9] and Light-



GBM [21]. We tune important hyperparameters of the base-

lines such as the depth, number of leaves and a learning rate.

For FAO, we tune the tree depth ∆ and the number of trees

T . We apply an ℓ1 penalty for decision node weights, for

which we find the optimal hyperparameter λ for a single

tree, and use it for the whole FAO forest. We apply a small

penalty on leaf weights with a fixed parameter µ = 0.01:

for regression we use an ℓ2 penalty, for classification an ℓ1
penalty. For an initial tree in the forest, we take a complete

tree of depth ∆ and random node parameters. More details

on hyperparameters and datasets appear in the suppl. mat.

Main results Table 1 reports the performance of differ-

ent forests on both classification and regression benchmarks

sorted by decreasing test error. The results are self-evident.

FAO-avg has the lowest test error in all datasets, often by

a considerable margin (e.g. MNIST, CT-slice). Even when

the difference is small at the first side (e.g. SUSY), it is im-

portant to note that a slight improvement in those datasets

is already hard to accomplish. Noticeably, we were able

to achieve ∼ 1.3% test error on MNIST which is about the

same performance as was obtained using multipayer percep-

trons. It worth to mention that we are not aware of any

other tree ensembling framework that has shown similar re-

sults on MNIST using original pixel values. Among other

baselines, GB-TAO is the second best approach followed

by LightGBM. This again convincingly shows the power of

optimization in ensemble training since GB-TAO also uses

better optimized trees as base learners.

In terms of model size, our FAO-avg generates trees with

total number of parameters that are similar or better than

the baseline methods. This is surprising given the fact that

it uses oblique splits which generally have more parameters

than axis-aligned ones. The reason is twofold: 1) we apply

ℓ1 penalty at each node that encourages sparsity; 2) FAO-

avg was able to achieve such an outstanding performance

by using small number of trees (by better optimizing them).

Training time Training T = 10 oblique trees of depth

∆ = 6 on MNIST for FI = 20 FAO iterations on a single

processor takes about 12 minutes. For averaged FAO forests

we train multiple of those independently, and so paralleliza-

tion comes for free, and using just 6 processors on a typical

machine we can obtain a forest with test accuracy of 1.5%

in a matter of minutes.

Exploring the number of FAO iterations and forest size

The left two plots of fig. 4 show the effect of the number

of FAO iterations FI on the generalization performance of

the averaged FAO ensembles. The general observation is

that better optimized individual small forests does indeed

help to produce most accurate models. The right two plots

show how the size of the individual FAO forests affect the

model performance. We can observe that using very few

MNIST cpuact
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Figure 4. The effect of the number of FAO iterations FI and FAO

forest size T for the overall ensemble of Q averaged FAO forests.

We report 0-1 error on the MNIST dataset and RMSE on cpuact.

trees gives inferior performance. While the curves with

many trees (T = 20) still have the downward trend for the

given budget of trees, it will result in a huge ensemble if we

set the number of terms Q large.

7. Conclusion

Forest-based predictors, from Random Forests to Gradi-

ent Boosting forests, are among the most accurate of all

machine learning models. Surprisingly, the way they are

learned from data is very different from most modern ML al-

gorithms: they lack a well-defined loss function over a para-

metric model, instead using heuristic procedures to grow

each individual tree and to ensemble them together, so that

the forest grows by adding new trees greedily at each iter-

ation. We think the reason for this is simple: trees (hence

forests) define a non-differentiable function, which is hard

to optimize. The recently proposed Tree Alternating Opti-

mization algorithm has made it possible to learn trees by

properly optimizing a loss function, and in this paper we

show we can do the same for a forest with the FAO algo-

rithm. The experimental results confirm this: we can learn

forests that are both smaller and more accurate than with

traditional algorithms. The ability to optimize a forest over

all its parameters iteratively makes it also possible to use

regularization terms, or to quickly retrain a forest as more

data is collected, among other possibilities.

Our work also reveals an intriguing phenomenon: forests

define such a flexible predictive function that it easily over-

fits (when properly optimized). Averaging multiple FAO

forests avoids this problem, but we suspect there may be a

more direct way to train a single forest so it does not overfit.
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