Supplementary material for:
Pushing the Envelope of Gradient Boosting Forests
via Globally-Optimized Oblique Trees

Abstract

We provide the following. 1) Exploration of deeper trees in XGBoost (section 1). 2) Analysis of tree
diversity in GB TAO (section 2). 3) Experiments with different number of trees per GB step (section 3).
4) The effect of the number of TAO iterations on training time and model accuracy (section 4). 5)
Comparison with other baselines (section 5). 6) Description of the experiments’ setup, for reproducibility:
datasets, comparison methods, hyperparameters, etc. (section 6).

1 Exploring deeper trees in XGBoost
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Figure 1: Exploration of different tree depths in XGBoost. The left column uses a depthwise tree growing
method, where nodes closer to the root are expanded first. The right column uses a lossguide tree growing
method, where nodes with highest loss change are expanded first, and the tree complexity is controlled by
the number of leaves max_leaves. A is the max depth of the forest.



As it is argued in section 2 of the main paper, axis-aligned forests have limited ability to model higher
order feature interactions. The trees must grow very deep in order to capture such high interaction levels.
Though in experiments we do consider depth of up to 20 during cross validation in XGBoost, in fig. 1 we
explicitly explore the behavior of tree depth. In the left column of fig. 1 we use depthwise tree growing
option, and control the tree depth via max_depth, and in the right column we use a lossguide tree growing
method, and the complexity of the tree is controlled by max_leaves. As the plots clearly indicate, deeper trees
result in an overall less accurate ensemble, in spite of having more capacity to model higher order interaction
levels. This is in accordance with the XGBoost documentation, which recommend to use shallower trees to
mitigate overfitting.

2 'Tree diversity in GB TAO
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Figure 2: The number of tree leaves (top) and the number of nonzero parameters per tree (bottom) in GB
TAO oblique trees.

At each boosting step of GB, TAO starts with some initial, complete tree of depth A and random node
parameters @, and optimizes the objective function GB provides. After performing some fixed number [
alternating optimization paths through all the nodes, it performs pruning of dead nodes/subtrees, and so the
resulting tree will usually be smaller. In fig. 2 we explore how the individual trees produced at each boosting
step differ in terms of the number of leaves and the number of parameters. Interestingly, for the real-sim
dataset, as GB steps progress, the resulting trees become much smaller, whereas for MNIST we observe the
opposite trend. Unlike XGBoost, which specifically include a penalty term on the number of leaves in the
objective function, TAO has an indirect control on the tree complexity through the parameter « of the ¢
penalty term on node parameters. The erratic trend of the curves in fig. 2 clearly indicate for the diversity
of the trees in the final forest, which in general is important in ensemble learning.



3 How many trees per boosting step?
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Figure 3: Test error as a function of boosting steps (left column) and as a function of the number of
parameters (right column) when using different & number of trees at each boosting step. The tree depth
for CIFAR100 is A=8, for MNIST A=7, and for Pendigits A=4. For MNIST and Pendigits we additionally
plot the result of using a higher depth A when using a single tree k=1.

Cross entropy loss for K-class (K > 2) classification in GB requires a base learner to output a real valued
K dimensional vector v € R¥. With diagonal Hessian approximation, a base learner’s objective function
separates over K, and so there is a choice of using a single tree with vector outputs or K trees with scalar
outputs or something in between. In general, K trees have more representation capacity than a single vector
valued tree, because the latter can exactly be represented with K trees with the same structure and decision
node parameters, but the leaves outputting the corresponding entry of the vector leaves, while the joint
partition of the input space produced by K trees cannot in general be represented with a single tree of a
reasonable size. Possibly because of this, Friedman’s [4] original paper, along with XGBoost and Light GBM,
use K trees at each boosting step.

Oblique trees are no different than axis-aligned ones on this regard, except that a single oblique tree
trained with TAO is much stronger than a greedily induced axis-aligned tree, and using K oblique trees per
GB step can result in the vast increase on the number of parameters. In fig. 3 we explore how using different
number of trees k per boosting step affects the test error and model size as measured in terms of the number



of nonzero parameters. Unsurprisingly, as the left column shows, for the fixed number of boosting steps,
using more trees k per GB step in general produces a more accurate ensemble, however, on the left column
we can observe that for a given model size it is not always clear which option is better. Because it is sensible
to use a single large tree or K shallow trees per boosting step, one must perform more extensive comparisons
to draw some conclusion. In general, this issue of selecting optimal & is more complex, and can fall onto the
category of a general model selection problem in machine learning.

4 Training time and the number of TAO iterations
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Figure 4: Test error as a function of the number of boosting steps M and training time when using different
number of TAO iterations I. All models are trained using parallel processing with 8 threads.

The number of TAO iterations I has a significant effect on training time and model accuracy. In general,
one would expect more accurate models from a larger number of TAO iterations I at the expense of longer
training time. In fig. 4 we explore this behavior for two datasets. Using a single TAO iteration I = 1 results
in a very fast training time, but the resulting forests have a significant drop in accuracy. From moderately
smaller TAO iterations (I = 5,10), we observe a slight increase in test error, but with a considerable
improvement in training time. In practice, if one wants to quickly test the performance of GB with oblique
trees, then using fewer TAO iterations I might provide a reasonable picture on model accuracy. However,
as the curve of I = 20 on MNIST indicate, higher values of TAO iterations I should produce overall more
accurate GB forests.

5 Comparison with other baselines

Comparison with GB neural networks (NNs) The focus of our paper was on forests (which are by far
the most popular form of GB ensemble). But it would be interesting to compare with GB NNs, as NNs can



|F0rest / NNs Flest #pars. M A/H Hleav./U
5 GrowNet [2] 8.82+0.01 not provided in [2]
> |GB-TAO 8.7340.01 402k 100 6 63
GrowNet 5.57+0.23 14M 95 2 192
% GrowNet [2] 5.314+0.35 not provided in [2]
GB-TAO 4.61+0.02 778k 50 8 164
§ GrowNet 2.52--0.03 152k 100 2 20
52|GB-TAO 2.2340.02 31k 50 6 48
GrowNet 5.0340.06 172k 100 4 18
% GrowNet 3.934+0.05 94k 90 2 18
S |GB-TAO 3.43+0.00 481k 100 12 603
s | GrowNet 9.90-0.32 2M 100 2 81
£ |GB-TAO 8.76+0.02 573k 50 6 216
= |GB-TAO 8.68-:0.02 1M 100 6 218
£ |Bagged TAO  2.0640.05 110k 100 10 95
~|GB-TAO 2.00+0.04 44k 30 7 83
.. |Bagged TAO  2.37£0.05  25M 100 8 124
E Bagged TAO [3] 2.31+0.08 1.2M 30 8 -
S |GB-TAO 1.94+0.00 671k 30 10 252
5 GB-TAO 26.6440.02 3.3M 200 6 46
¢ |Bagged TAO  26.63+0.03  4.1M 200 8 79
% Bagged TAO  20.13+0.29 4M 100 8 218
= |GB-TAO 18.1340.00 IM 100 6 35
| GrowNet 3.54-0.02 17M 20 2 30
7|Bagged TAO  2.72+0.04 531k 50 8 16
§|Bagged TAO 2724002  1.IM 100 8 16
GB-TAO 2.1240.02  1.3M 20 6 54

Table 1: Comparison with GrowNet (an implementation of GB Neural Network) and Bagged TAO.

also capture higher-order interactions and can directly optimize the objective function of GB. We use the
recent GrowNet [2], that employs shallow (1 to 4 hidden layers) multilayer perceptrons as base learners in
GB. The two regression datasets in [2] (year and CT) are also used in our paper, and so we cite their results
in the table (in CT our train/test splits differ, but we retrain GB-TAO according to their split in the table).
For other datasets we use their code (https://github.com/sbadirli/GrowNet) and based on their experimental results
[2], we tune the following hyperparameters with grid search: boost_rate = {0.1, 1.0}, epochs_per_stage = {1,
10}, 1r = {0.005, 0.01}. We explore MLPs with number of hidden layers U € {2,4} and number of hidden
units U € {%D, %D, D, 2D} (the same for each layer in GrowNet), where D is the feature dimension. We
set the maximum number of boosting steps to 100, but the best step M is cross-validated. GrowNet does
not support multiclass losses, so we compare only on regression and binary classification in Table 1.

Comparison with Bagged TAO [3] uses bagging with oblique decision trees trained with TAO for
classification. From [3] we cite the result of MNIST, and for other classification datasets we run bagged TAO
ourselves. We follow the experimental setup and recommendation in [3]: TAO minimizes a 0-1 loss with a
small sparsity penalty («=0.01) and is trained on a 90% random sample for 40 iterations. We cross-validate
the depth A={6,8,10} and the number of trees M'={30, 50, 100, 200}.

As the Table 1 shows, GB TAO clearly outperforms GrowNet and (with one exception where it is
comparable) bagged TAO in accuracy, often with fewer parameters.



6 Experimental setup

We implemented GB-TAO in C++. For all the experiments in GB TAO we start with a complete tree of
depth A and random initial parameters (Gaussian (0,1)). Though it is possible to initialize a tree with
some heuristic or from CART, we use random parameters at each GB step to induce more diversity into the
ensemble. We parallelize the optimization over the nodes at a given depth using OpenMP. When solving
a reduced problem at a decision node, we use an ¢; regularized logistic regression in LIBLINEAR solver of
version 2.43. « is a hyperparameter in GB TAO so ideally it should be cross-validated. To save training
time, instead of cross-validating it for the whole forest, we cross-validate a: only for a single tree. This simple
choice already results in leading performance in our experiments. Specifically, we train a single tree for 3
choices of a (0.01, 0.1, 1.0) and choose the o that gives a most accurate tree on a validation set. The set
of depth A parameters we evaluate during cross validation is {4, 6, 8, 10, 12}. The set of the number of
boosting steps M we consider is {1, 5, 10, 20, 30, 100, 200}. Because of the longer runtime, we select only
2-3 of values from those sets depending on the complexity of the dataset. All the experiments are performed
on Intel(R) Xeon(R) CPU E5-2699 v3 with 256 GB memory.

6.1 Baselines

To compare models of different size, for the baselines we fix the number of boosting steps M (or number of
trees T' in SPORF) to {10, 100, 300, 500, 1000}, and perform grid search over other hyperparameters.

XGBoost We use a Python package of version 1.4.1. We use the exact tree_method. During cross validation
we perform grid search over the following hyperparameter values: max_depth = {4, 6, 8, 10, 20}, eta
= {0.01, 0.05, 0.1, 0.3}.

LightGBM We use a Python package of version 3.2.1. During cross validation we perform grid search over
the following hyperparameter values: num leaves = {16, 31, 64, 128, 256, 512}, learning rate =
{0.01, 0.05, 0.1, 0.3}.

scikit-learn We use a version 0.24.1. We use GradientBoostingClassifier and GradientBoostingRegressor
classes (not histogram versions). During cross validation we perform grid search over the following hy-
perparameter values: max_depth = {4, 6, 10, 14}, learning rate = {0.05, 0.1}.

SPORF We use a Python package of version 2.0.5. During cross validation we perform grid search over
the following hyperparameter values: projectionmatrix = {RerF, S-RerF}, max_depth = {10, 20,
None}, max_features = {sqrt, log2, None}.

A full exploration of all hyperparameters of the baselines is infeasible. But we attempt to do more
thorough grid search for small scale cpuact and pendigits datasets over the following for XGBoost: max_depth
= {1,4,6,8}, eta = {0.01,0.05,0.1,0.3}, gamma = {0,1,2,10}, min_child weight = {0.0,1.0,5.0}, subsample =
{0.5,0.7,1.0}, colsample bytree = {0.5,0.7,1.0}. We set the number of boosting steps to 5000 M, and use
early stop based on validation. While the results slightly improved over those in the main paper, GB TAO
still wins by a large margin. We also used the Bayesian optimization package hyperopt, but the results were
worse.

6.2 Esimation of model size

For axis-aligned GB forests (XGBoost, Light GBM, and GB-sklearn) we count the number of parameters
as follows: we sum the number of parameters of each node of all the trees in the forest, where an axis-
aligned split node counts for two parameters (feature index and threshold) and a constant leaf counts for
one parameter. In GB TAO we exactly estimate the number of nonzero parameters at a decision node. The
interface of SPORF does not provide explicit access to tree parameters, and so we provide a reasonable upper
bound: the max_features parameter controls how many features are used at a decision node, so by assuming
that each split node uses exactly max_features parameters we estimate the total number of parameters in
SPORF. We estimate FLOPS as an average number of nonzero parameters a test point encounters during
forest inference. Except for GB TAO, we provide an upper bound on FLOPS by assuming that each test
point reaches a maximum depth.



Dataset Nirain ~ Niest D Dy, K

pendigits 7494 3498 16 16 10
MNIST 60000 10000 784 150 10
CIFAR100 (VGG16 feats) 50000 10000 512 324 100
News20 15935 3993 62061 80 20
real-sim 50616 21693 20958 o1 2

Table 2: Specs of the datasets used in our experiments for classification. N is a sample size, D is a feature
dimension size, Dy, is the average number of nonzero features, and K is the number of classes.

6.3 Classification datasets
MNIST a standard benchmark. We use direct pixel intensities scaled between 0 and 1 as input [7].

Pendigits a digit recognition dataset, where inputs are resampled x and y pixel coordinates recorded from
a pressure sensitive tablet [1]. We preprocess the inputs to have zero mean and variance one. Obtained
from the UCI Machine Learning Repository [8].

CIFAR100 a standard image classification benchmark in computer vision. We use as features the output
of the last convolutional layer of a pretrained VGG16 network [6].

News20 a standard document classification benchmark. The features are normalized word counts. Obtained
from a LIBSVM multiclass data collection !.

real-sim a document classification dataset. The features are normalized word counts. Obtained from a
LIBSVM binary data collection 2.

6.4 Regression datasets

cpuact the task is to predict the percentage of time a CPU spends in user mode. The features consist of
various statistics of memory and other operations. Obtained from the Delve project 3.

CT slice the task is to predict the relative location of the CT slice on the axial axis of the human body.
The features are histograms describing bone structures and air inclusions. Obtained from the UCI
Machine Learning Repository [8].

Superconductivity the task is to predict the critical temperature of a superconductor from the features
extracted based on the chemical formula such as thermal conductivity, atomic radius, valence, electron
affinity, and atomic mass [5]. Obtained from the UCI Machine Learning Repository [8].

CASP a dataset of Physicochemical Properties of Protein Tertiary Structure. The task is to predict the
size of the residue. Obtained from the UCI Machine Learning Repository [8].

Year Prediction MSD the task is to predict the release year of a song from audio features. Obtained
from the UCI Machine Learning Repository [8].

7 Extended table results
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|F0rest Erest (%) Erain (%) #pars. FLOPS M k A leaves
XGBoost 4.38+0.00 0.05=+0.00 70795 (1 000) 10 10 10 236.7
GB-TAO 4.17+0.08 1.904+1.10 21038 2295 1 1 12 192
Light GBM 3.73£0.00 0.00£0.00 149 227 (3515) 10 10 35 498.1
SPORF 3.08+0.11 0.00£0.00 (14 369 600) (128 800) 100 1 46 4956
SPORF 2.95+0.06 0.00£0.00 (42987 000) (394 800) 300 1 47 4942
§ SPORF 2.89+0.04 0.00£0.00 (143493 000) (1400 000) 1000 1 50 4949
%“ GB-TAO 2.33+0.00 0.00£0.00 199 994 (23 193) 10 1 10 209
= | XGBoost 2.20+0.00 0.00£0.00 106 759 (5992) 100 10 6 36.3
é Light GBM 2.02+0.00 0.00£0.00 120811 (10085) 100 10 10 40.9
~ |GB-sklearn  1.96+0.03 0.00£0.00 1232860 51966 100 10 10 42
CZ GB-TAO 1.944+0.00 0.00£0.00 671 344 (71 124) 30 1 10 252
Z | XGBoost 1.91£0.00 0.00£0.00 404 525 (29290) 1000 10 6 27.6
= GB-TAO 1.6540.02 0.00£0.00 3046 165 846 133 50 10 7 37
Light GBM 1.6240.00 0.00£0.00 642034 (84 874) 1000 10 21 22
GB-TAO 1.55+0.02 0.00£0.00 7.2M 2M 140 10 7 34
XGBoost 5.15+0.00 0.08+0.00 8701 (772) 10 10 8 30
Light GBM 4.924+0.00 0.15+0.00 9055 (1121) 10 10 11 31
. GB-sklearn  4.19+0.01 0.0£0.00 168 911 (600) 100 10 6 57
S |SPORF 4.00£0.02  0.03£0.01 (16 560) (760) 10 1 19 332
Y |GB-sklearn  3.66+0.04 0.01£0.00 16 932 (600) 1000 10 6 57
% XGBoost 3.52+0.00 0.00£0.00 57018 (9679) 300 10 4 7
5’/ Light GBM 3.49+0.00 0.00£0.00 89 692 (8177) 100 10 11 31
12 XGBoost 3.46+0.00 0.00£0.00 18 442 (3157) 100 10 4 7
Eo XGBoost 3.46+0.00 0.00£0.00 137176 (25451) 1000 10 4 5
E Light GBM 3.43+0.00 0.00£0.00 96 702 (9844) 300 10 8 31
3 Light GBM 3.3140.00 0.00£0.00 895 366 (41311) 1000 10 4 31
GB-TAO 3.15+0.25 0.08+0.03 1324 104 1 1 8 60
SPORF 2.91+0.09 0.00£0.00 (1 646 000) (80 000) 1000 1 20 330
SPORF 2.87+0.01 0.00£0.00 (105 600) (8000) 100 1 20 212
GB-TAO 2.17+0.02 0.00£0.00 13341 991 10 1 7 65
GB-TAO 2.00+0.04 0.01£0.00 44 456 3031 30 1 7 83
GB-sklearn 32.64+0.03 0.00£0.00 502 459 (36174) 100 100 6 17
= |XGBoost 30.20+0.00 0.00£0.00 133 261 (27 828) 100 100 4 5
% LightGBM  31.474+0.00 0.00£0.00 459970 (81033) 100 100 14 16
g LightGBM  30.324+0.00 0.00£0.00 1033235 (140558) 143 100 18 25
5 | XGBoost 30.15+0.00 0.00£0.00 174238 (19035) 1000 100 6 1.2
E GB-TAO 29.384+0.04 0.00£0.00 39410 2491 1 1 12 178
= SPORF 28.62+0.07 0.00£0.00 (26110) (1800) 10 1 20 262
E SPORF 27.07+0.02 0.00£0.00 (106 100) (9 000) 100 1 10 107
< |GB-TAO 26.98+0.04 0.00£0.00 1227547 324 825 30 5 8 33
% GB-TAO 26.86£0.02 0.00£0.00 2086 469 539 038 50 5 8 33
SPORF 26.71+0.05 0.00£0.00 (530 500) (45 000) 500 1 10 107
GB-TAO 26.64+0.02 0.00£0.00 3345 599 678 351 200 2 6 46

Table 4: As Table 1 in the main paper, but with more details.



|Forest Eiest (%) Eirain (%) #pars. FLOPS M k A leaves
GB-TAO 27.7540.00 4.1240.00 18662 6900 1 1 6 61
GB-sklearn 27.6040.04 8.47+0.03 168 593 (2 800) 10 20 14 282
XGBoost 27.25+0.00 5.89+0.00 67421 (4000) 10 20 20 113
LightGBM  25.90+0.00 11.19+£0.00 18 200 (4 705) 10 20 24 31
GB-sklearn 23.4240.03 2.32+0.02 155984 (12 000) 100 20 6 27
SPORF 22.51+0.10 2.58+0.04 (110000 100) (14 168 100) 100 1 569 4401
XGBoost 22.1940.00 3.30+£0.00 83909 (12 000) 100 20 6 15
/Co: GB-sklearn 21.7140.02 2.224+0.02 346 821 (36 000) 300 20 6 20
& |SPORF 21.65+0.26 2.49+0.01 (1103501 000) (142179000) 1000 1 571 4415
%ﬁ XGBoost 21.394+0.00 2.50+0.00 704 948 (120000) 1000 20 6 12
% XGBoost 21.34+0.00 2.30+0.00 187 626 (36000) 300 20 6 11
i’ LightGBM  20.69+0.00 2.4940.00 1820000 (539183) 1000 20 27 31
Q' |LightGBM  20.01£0.00 2.254+0.00 182 000 (57075) 100 20 28 31
E GB-TAO 19.844+0.02 2.2240.01 534 327 195323 30 1 6 61
= LightGBM  19.78+0.00 2.2740.00 546 000 (166448) 300 20 28 31
GB-TAO 18.13+0.05 2.2140.01 478 900 415652 10 20 4 8
GB-TAO 18.76+0.01 2.224+0.00 745575 293 651 50 1 6 52
GB-TAO 18.1340.00 2.2240.00 1002 318 461 802 100 1 6 35
GB-TAO 16.65+0.04 2.21+0.03 1673838 1484054 40 20 4 8
XGBoost 7.68+0.00 6.01+0.00 6199 (200) 10 1 20 207
GB-sklearn  5.65+0.05 2.68+0.04 150 547 (1400) 100 1 14 502
SPORF 5.34+0.08 0.72+0.03 (6 278 010) (996 150) 10 1 670 4435
GB-sklearn  4.72+0.03 0.09+0.00 247 821 (4200) 300 1 14 276
GB-sklearn  4.25+0.02 0.01+0.00 421 642 (14000) 1000 1 14 141
SPORF 4.1440.05 0.24+0.00 (62 780 100) (9 961 500) 100 1 687 4301
N |SPORF 4.06+0.03 0.23£0.00 (188953 500) (30015 000) 300 1 690 4315
= | XGBoost 3.54+0.00 0.99+£0.00 24202 (2000) 100 1 20 81
2“ GB-TAO 3.44+0.24 0.16+0.00 17674 11212 1 1 6 42
= | XGBoost 3.41+£0.00 0.75£0.00 22908 (3000) 300 1 10 26
< |LightGBM  331+£0.00  0.01+0.00 27300 (8614) 300 1 29 31
Fli XGBoost 3.31+0.00 0.42+0.00 100 597 (14000) 1000 1 14 34
?3 GB-TAO 3.12+0.00 0.16£0.00 52 564 39302 5 1 4 15
= |LightGBM 3.05+0.00 0.42+0.00 100 597 (14000) 1000 1 30 31
GB-TAO 2.77+0.00 0.14+0.00 113 426 84899 10 1 4 15
GB-TAO 2.41+0.00 0.14+0.00 422635 317967 30 1 4 15
GB-TAO 2.12+0.02 0.14+0.00 1319 368 566 360 20 1 6 54

Table 5: As Table 2 in the main paper, but with more details.
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| Forest Eiest (%) Eirain (%) #pars. FLOPS T A leaves
XGBoost 3.74+0.00 3.30+0.00 1021 (60) 10 6 35
XGBoost 2.60£0.00 0.5440.00 60211 (1000) 100 10 201
. XGBoost 2.55+0.00 0.7540.00 39231 (1800) 300 6 201
S | XGBoost 2.51£0.00 1.1340.00 41662 (4000) 1000 4 15
ﬁ" Light GBM 2.51+0.00 1.5140.00 5686 (179) 10 23 190
© | GB-sklearn 2.51+0.06 1.3340.00 14377 (600) 100 6 48
< |GB-TAO 2.42+0.02 1.96+0.01 17689 2905 30 6 46
Z | GB-sklearn 2.41+0.04 0.68+0.00 42754 (4000) 1000 4 15
g Light GBM 2.27+0.00 0.9940.00 19000 (1875) 100 34 64
=5 | Light GBM 2.26+0.00 1.154+0.00 27300 (3581) 300 21 31
5 Light GBM 2.25+0.00 0.50+0.00 91000 (12468) 1000 21 31
GB-TAO 2.23+0.02 1.61+0.01 31158 4981 50 6 48
Light GBM 2.11+0.00 1.284+0.00 15340 (370) 10 42 512
Light GBM 1.5340.00 0.41£0.00 153400  (5543) 100 107 512
g Light GBM 1.5240.00 0.6840.00 91000 (12557) 1000 23 31
& | Light GBM 1.4540.00 0.39£0.00 229800 (11811) 300 79 256
=5 | GB-sklearn 1.4340.02 0.66+0.01 192208  (1000) 100 10 641
I | XGBoost 1.5040.00 0.7340.00 106897  (1000) 100 10 357
8 |GB-TAO 1.2840.02 1.05+0.01 28261 2083 1 8 223
% | GB-sklearn 1.264+0.03 0.07£0.01 900640 (10000) 1000 10 301
& | XGBoost 1.264+0.00 0.1940.00 767227  (1000) 1000 10 256
O |GB-TAO 0.90+0.02 0.61+0.02 81466 24571 30 4 16
GB-TAO 0.52+0.01 0.2740.00 475253 71960 50 6 61
GB-TAO 0.45+0.01 0.13+0.00 1179507 160147 100 6 64
GB-TAO 4.38+0.03 4.1140.02 4113 107 1 12 430
XGBoost 3.66+£0.00 2.12+0.00 118957  (1000) 100 10 397
GB-sklearn 3.65+0.02 1.5140.00 727282  (1400) 100 14 2424
XGBoost 3.61£0.00 1.3640.00 267585  (3000) 300 10 297
= |XGBoost 3.58+0.00 0.9940.00 793174 (10000) 1000 10 265
24 | GB-sklearn 3.58+0.01 0.34£0.01 854104 (10000) 1000 10 285
5 |LightGBM  3.54£0.00  1.55+0.00 153400 (5297) 100 114 512
o, | Light GBM 3.53+0.00 1.871+0.00 229800 (10256) 300 80 256
@ GB-TAO 3.49+0.01 2.76+0.02 255985 5243 50 12 645
Light GBM 3.48+0.00 0.76+0.00 766 000 (43440) 1000 109 256
GBDT-PL [9]  3.46£0.00 - - - - -
GB-TAO 3.43+0.00 2.53+0.01 480 752 10267 100 12 603
GB-TAO 3.39+0.01 2.31+0.01 886 707 19955 200 12 552
g GB-TAO 11.0240.10 6.11+0.01 8410 485 1 10 466
™ | GB-sklearn 9.38+0.01 4.51£0.01 138658 (6 000) 1000 6 47
% | XGBoost 9.20+0.00 5.41+0.00 130465 (6 000) 1000 6 44
T | @B-sklearn 9.14+0.03 4.7440.02 128821  (1000) 100 10 430
T | XGBoost 8.98+0.00 5.64+0.00 132040  (1000) 100 10 441
Z |GBDT-PL [9]  8.80+0.00 - - - - - -
8 Light GBM 8.77+0.00 6.00+0.00 38200 (2667) 100 45 128
% GB-TAO 8.76+0.02 6.52+0.02 572 841 29974 50 6 216
g* Light GBM 8.73+0.00 4.904+0.00 190000 (18477) 1000 39 64
« |GB-TAO 8.68+0.02 6.11+0.01 1095134 58 636 100 6 218
GB-TAO 9.17+0.01 8.67+0.01 18725 715 1 8 252
XGBoost 9.05+0.00 7.75+0.00 153 226 (849) 100 10 511
Light GBM 9.03+0.00 6.88+0.00 153400 (2586) 100 37 512
GB-sklearn 9.03+0.02 7.19+0.01 247987  (1000) 100 10 827
é\ XGBoost 9.00+£0.00 6.20+0.00 567984  (2849) 300 10 632
2 |Light GBM 8.92+0.00 6.21+0.00 460200 (8026) 300 43 512
ui% Light GBM 8.92+0.00 3.96+0.00 1534000 (25622) 1000 43 512
— | XGBoost 8.91+0.00 5.31£0.00 1822273  (9694) 1000 10 608
§ GB-TAO 8.88+0.02 8.67+0.01 78127 10076 20 6 62
> |GB-TAO 8.81+0.02 8.50+0.01 118 608 14976 30 6 62
GB-TAO 8.77+0.01 8.31+0.01 199615 24 683 50 6 62
GB-TAO 8.73+0.01 8.01+0.01 401 719 48 592 100 6 63

Table 6: As Table 3 in the main paper, but with more details.
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