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Many important practical applications involve a binary classification problem with imbalanced
classes (e.g. few positives and many negatives) or asymmetric costs (e.g. a false positive is much
more costly than a false negative), where the positives and negatives are suitably defined in each
case. Examples are fraud or spam detection or churn prediction. Although many types of classifiers
may be used, we focus on classification trees, which are widely recognized as among the most
interpretable models. We consider the traditional axis-aligned trees (where each decision node uses
a single feature) and also sparse oblique trees (where each decision node uses a linear combination
of a small subset of features). The latter are far more powerful and subsume as particular cases
axis-aligned trees (such as CART or C5.0) and linear classifiers (such as logistic regression or linear
SVMs). In both cases each leaf node outputs a constant label.

In these types of problems, optimizing the raw accuracy does not work well because it can largely
ignore the low-cost or infrequent class. It is desirable to have control on the number of false positives
(FPs) or true positives (TPs). A popular way to achieve this is through the ROC curve, but this results
in suboptimal classifiers because it does not explicitly optimize for accuracy or true positives while
controlling the false positive rate.

Our paper has two contributions. Firstly, we formally propose the concept of cost-optimal curve
(COC). This defines a set of optimal-accuracy classifiers as a function of the false positive level. We
give an equivalent, penalized formulation which has the form of a weighted 0/1 loss and (with our
new algorithm) is more amenable to optimization, although still NP-hard in general. Although this
idea is straightforward, the COC properties and its optimization appear not to have been explored
before. Note this is different from using a weighted surrogate loss such as the cross-entropy [4, 6];
while this (being differentiable) can be easily optimized, its optimum can be quite far from the
true one. Second, we propose the first algorithm that directly tries to optimize this problem for
classification trees, with the guarantee that the weighted 0/1 loss decreases monotonically at each
iteration. Our experiments confirm the algorithm provides a good approximation to the ideal COC
curve and is generally much better than using the ROC curve or approaches based on over- or
undersampling, cost-sensitive surrogates or weighted purity criteria for constructing the tree.

The suboptimality of the ROC curve The ROC curve is a fast, simple way to achieve a classifier
with lower overall accuracy but a more desirable FP rate, particularly in cases with imbalanced
classes or asymmetric class costs. However, it is clear that (except possibly for the base classifier)
this does not produce a classifier that, having the desired FP rate, is optimal within its model class.
To obtain this we need to solve a different optimization problem as a function of the FP rate, as we
describe next.

Cost-Optimal Curve (COC) Assume a training set {(xn, yn)}
N
n=1 where xn ∈ X and yn ∈

{−1,+1} for n = 1, . . . , N , and a decision tree T (·; θ): X → {−1,+1} with parameters θ.
We want to optimize the number of false negatives (FN) subject to a constraint on the number of
false positives (FP):

min
θ

ν(θ) s.t. π(θ) ≤ p with ν(θ) =
N∑

n: yn = +1

L(yn, T (xn; θ)), π(θ) =
N∑

n: yn = −1

L(yn, T (xn; θ))

(1)
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Figure 1: Illustration of the COC curve for a classifier with parameters θ ∈ R
2, FP rate π(·) and

FN rate ν(·). Left: θ∗(p) is an optimal classifier (minimizing ν) with an FP rate of at most p. The
infeasible set is in pink. Middle: the optimal classifier path θ

∗(λ) over the cost λ, i.e., minimizing
ν + λπ, from θ

∗

ν = θ
∗(0) to θ

∗

π = θ
∗(∞). The contours of ν and π are in color and black,

respectively. Right: the COC curve corresponding to the optimal classifier path and the ROC curve
(assuming as base classifier that for λ = 1).

where L(y, y′) = 0 if y = y′ and 1 if y 6= y′ is the 0/1 loss, and ν and π are the FN and FP rate,
resp. Note ν(θ) + π(θ) =

∑N

n=1
L(yn, T (xn; θ)) is the 0/1 loss on the whole training set. This

is a constrained optimization problem whose feasible set are those classifiers having a FP rate of at
most p (fig. 1 (left)). By solving this for all p ∈ [0, N ] we obtain a finite collection of at most N +1
classifiers, each for a different FP and FN (hence TP) rate, which defines the COC curve.

Cost-sensitive 0/1 loss Consider now the following unconstrained optimization problem:

minθ ν(θ) + λπ(θ) (2)

where λ ≥ 0 and θ defines the parameters of a decision tree (both axis-aligned and oblique). This
objective function is a weighted 0/1 loss: it gives a misclassification cost of 1 to a FN and of λ to a
FP. The usual misclassification error (unweighted 0/1 loss) results for λ = 1. Problems (1) and (2)
have the same set of solutions, i.e., solving (1) for all p ∈ [0, N ] produces the same set of classifiers
as solving (2) for all λ ≥ 0 and hence the same COC curve, but solving (2) is easier than (1) in our
case). Note that, if the base classifier used to construct the ROC curve was trained to minimize the
0/1 loss (i.e., eq. (2) with λ = 1), then the ROC curve touches the COC curve for λ = 1, but the
latter otherwise dominates. See fig. 1 (middle and right).

Optimizing a cost-sensitive 0/1 loss over a classification tree. To realize the advantages of the
COC curve one needs to optimize (2), which uses a weighted 0/1 loss, as best as possible. Tradition-
ally, as in CART and C5.0, decision trees have been trained in a heuristic way by greedy recursive
partitioning. This sets a decision node’s split by optimizing a local “purity” criterion (such as the
Gini index or information gain), but the overall procedure does not optimize any loss over the entire
tree [2, 5, 3]. Recently, an algorithm has been proposed (Tree Alternating Optimization (TAO)) [1]
which does optimize a global loss over a parametric tree (axis-aligned or oblique). In this work, we
extend TAO to handle a weighted 0/1 loss objective such as that in (2).

Our experimental results show in general the dominance of COC curves over the whole TP-rate vs
FP-rate space for oblique decision trees trained with TAO compared with other approximate methods
such as cost supportive CART or C5.0 or other oblique decision trees such as OC1 with sampling.
Fig. 2 depicts some subset of results: COC consistently achieves better results than the baselines.
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Figure 2: Some experiment results on imbalanced datasets.
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